Host-dependent factors in the pathogenesis and persistence of *Salmonella* serovars in animals and humans

Serovars of *Salmonella*can show a wide range of host-specificity with regard to infections. Some serovars such as *Salmonella* Typhimurium and *S*. Enteriditis, have broad host ranges, infecting many animal species as well as humans. Other serovars are host-restricted, such as S. Typhi, which only infect humans and primates, or S. Gallinarum/Pullorum which only infect avian species, and other serovars show host-adaptation, such as S. Choleraesuis or *S*. Dublin which affect swine or cattle, respectively, but which can also cause severe infections in humans. *Salmonella* is therefore a pathogen of variable broad and restricted host-specificity. The zoonotic potential lies in the high adaptability of this pathogen. Studies on host-specificity and disease forms for many serovars of *Salmonella* remains limited, in part due to the lack of infection models.

Recent studies suggest that differences in host-specific immune responses play a decisive role in the ability for certain serovars to establish infections. While immune cells play a large role in both antigen presentation and clearance functions of intestinal pathogens, the initial infection by *Salmonella* is generally associated with intestinal epithelial cells, which are also capable of immune cell signalling. The intestinal innate immune response is therefore likely to play a large role in the outcome of infection in human and different animal species.

We are investigating the species-specific differences in the innate immune response to different bacterial serovars by comparing the functions of human, avian and swine immune response regulators to *Salmonella* infections. In addition to phenotypic characterization of adhesion, invasion and intracellular growth of different *Salmonella* serovars with different host species, we are also characterizing the host cell immune responses to infection in intestinal epithelial and macrophage cell lines of human and different animal origins.

Current Members of this Project:

Katharina Straßl, Peter Schwerk, Dr. Karsten Tedin

Funding/Grant Support:

Bundesministerium für Bildung und Forschung (BMBF) Grant "Zoonose"

Collaborations:

Dr. Christine Josenhans, Medizinische Hochschule Hannover

Dr. Bernd Kaspers, Ludwig-Maximillians-Universität München

Selected Publications:

Gripp, E., D. Hlahla, X. Didelot, F. Kops, S. Maurischat, K. Tedin, T. Alter, L. Ellerboek, K. Schreiber, D. Schomburg, T. Janssen, P. Bartholomaus, D. Hofreuter, S. Woltemate, M. Uhr, B. Brenneke, P. Gruening, G. Gerlach, L. Wieler, S. Suerbaum and C. Josenhans (2011) Closely related *Campylobacter jejuni* strains from different sources reveal a generalist rather than a specialist lifestyle. *BMC Genomics* 12:584.

Le Bourhis, L., J. G. Magalhaes, T. Selvanantham, L. H. Travassos, K. Geddes, J. H. Fritz, J. Viala, K. Tedin, S. E. Girardin, D. J. Philpott (2009) Role of Nod1 in mucosal dendritic cells during *Salmonella* pathogenicity island 1-independent *Salmonella enterica* serovar Typhimurium infection. *Infect. Immun.* 77:4480-4486.