Applications of Uni-List Capture-Recapture Methods in Meta-Analysis

Dankmar Böhning
Southampton Statistical Sciences Research Institute and Mathematical Sciences, University of Southampton, UK

Research
Programmes

Southampton
 Statistical Sciences Research Institute (S3RI)

S3RT brings together staff from across the University for research in methods andapplications ofstatistics.

Key facts

Unlessotherwies anted
Erebish larguage: ELTS 6.5 , whi minim um of 5 . 5in each component
 arhizuat withinthe pasttuoyoars
Duraton up totouryears(ful -time) up toserenvears (partime): desentantenfurdingroute: htagratad PhD, PhD, $1+3$

throughoyt the yer (PhDonl)
thougieyture year (PhDonl)
Applying Uniwersity applization form with tranceript, recearch propesal
and worenerence
and tworeserences

Find outmore

[^0]${ }^{\left(C_{\text {Being a part of }}\right.}$ $\mathrm{S}_{3} \mathrm{RT}$ Iis one of the mostsignificant milestones in my career. Thecourses, delivered by excellent professionals from the University of Southampton and abroad, provided good insights into statistics. I have no doubt that S3 RI will continue togrow and en rich with its highlyqualified and professional academicstaff. It hasbeen a pleasure to be part of this prestigiousgroup.)

Carla Azevedo

 S8RIPhostudent
PhD Statistics

We havea lwelrand thriwirgcommunityof postyrad uate studentsegged in reeachacross anarge cfarescend we supportthemextensisety. Supervicors, whoare interraticna exparts in theiffiol, prowiba in-deptheraining You will bo gienapersomalcomputer,adeskinasharedofficeand a conferenceattencanceallowence Weofferanumber of competitive studentships decoverfess and costof living. The typeoffundingdepens on the elgibityothecandicate. Kerfacts:additional information

Entry requirements: trist-arupper second-chssbachelar despee in a re bevart mathemetical subject (firarfouryear PhD) Masters inareevant mathematical subjectorinstoruppersecondelossdastee (for fiD) in arelvantmsthematioal sweactatiminthor inphys levelorequivaent, or satistactory pafformancost intruaw
Assesment progesionficm yerr che to year two of intestated FhDbytaughtcourses; annualreports. confirmation (for PhDewerd), thesis end vive*
Closingdat: fone burfundingdectomswille made from mid-March
Fundirg:wwwsouthampponac. ukgmaths/postyraduate' fes_and_furdirg page

PhD Social Statistics

Socialstatititicat Southamptont hastoonawerded Doctoral TriningCentre stetus by the ES RC. Ful fund ingisavaibb kfor Trrangap plicants wish ingtoundertake frontier research.
Keyfacts:additional information
Entry requirements: frst-or uppar second-ckssdagrea (1+3 route). First-or uppersecond-classdegree pus mastersatmerit lael (+ zे in in areleantsibject.or equivelentqualifications plus satisectacryperiarmance atintervew
Assesment progession iforn year one on $1+3$ by examuation teugitcourses;annual repors, connirmation (for PrDamand), thosis and wiua*
Closingdate: lone butearly applicationadvised
Fundirg: maybeavaikolethrough Univers ity's Vice Chancellor's Schoaerstip progemme
Additional coss: teltwork, printingand photocopying, et, soma halpmaj tap provitad

* For moreinformation oncortinuad zeseserrent Un roughoutyaur reseanch programnes see pagels

Researchthemes

sostatistics
www outiamptan ac ulysurdorstutistris
Desien of expeimants

Policy and evaluation
Www southamptan seculizaripolicyandevaication
Staustical modellin:
ww souhan ptonaciules ithodelling
Survaymathods
waw oumaropuriac. ules is w veme thors

Obesity Treatment

Risk of completed suicide after bariatric surgery: a systematic review

C. Peterhänsel ${ }^{1,2}$, D. Petroff ${ }^{3,4}$, G. Klinitzke ${ }^{1,2}$, A. Kersting ${ }^{1}$ and B. Wagner ${ }^{1,2}$

Case-study: Obesity Treatment Risk of completed suicide after bariatric surgery: a systematic review

- bariatric surgery is one of the most effective treatments for morbid obesity, indicating a significant long-term weight loss
- while overall mortality decreases in patients who received bariatric surgery, risk of suicide is still an issue
- Peterhänsel et al. (2013) undertake a meta-analysis on completed suicide after bariatric surgery
- 27 studies are included in the analysis

Table 2 List of papers included for the estimate of the suicide rate in decreasing order of person-years

	Person-years	Weight	\# of patients	\# of women	\# of suicides	Country
Adams	77,602	0.5397	9,949	8,556	21	USA
Marceau	10,388	0.0722	1,423	1,025	6	Canada
Marsk	8,877	0.0617	1,216	0	4	Sweden
Pories	8,316	0.0578	594	494	3	USA
Carelli	6,057	0.0421	2,909	1,989	1	USA
Busetto	4,598	0.0320	821	618	1	Italy
Smith 1995 (51)	3,882	0.0270	1,762	1,567	2	USA
Peeters	3,478	0.0242	966	744	1	Australia
Christou	2,599	0.0181	228	187	2	Canada
Günther	2,244	0.0156	98	82	1	Germany
Capella	2,237	0.0156	888	730	3	USA
Suter 2011 (31)	2,152	0.0150	379	282	3	Switzerland
Suter 2006 (32)	1,639	0.0114	311	269	1	Switzerland
Van de Weijgert	1,634	0.0114	200	174	1	Netherlands
Cadière	1,362	0.0095	470	392	1	Belgium
Mitchell	1,121	0.0078	85	72	1	USA
Himpens	1,066	0.0074	82	74	1	Belgium
Nāslund 1994 (38)	799	0.0056	85	69	2	Sweden
Forsell	761	0.0053	326	248	1	Sweden
Powers 1997 (55)	747	0.0052	131	111	1	USA
Kral	477	0.0033	69	56	1	USASweden
Nâslund 1995 (35)	457	0.0032	142	84	1	Sweden
Powers 1992 (52)	395	0.0027	100	85	1	USA
Smith 2004 (50)	354	0.0025	779		1	USA
Nocca	228	0.0016	133	90	1	France
Svenheden	166	0.0012	91	72	1	Sweden
Pekkarinen	146	0.0010	27	19	1	Finland

The column entitled 'weight' is the fraction of the total number of person-years and is used in the analysis for comparing the estimated suicide rate for patients after a bariatric operation with the rate for an equivalent general population.

Case-study: Obesity Treatment Risk of completed suicide after bariatric surgery: a systematic review

- selection bias issue: only studies with completed suicide are included
- Peterhänsel et al. (2013):

The most crucial point in the analysis was the proper treatment of the selection bias because of the method of finding papers.

- hence, suicide rate will be overestimated (potentially substantially)

conventional meta-analysis

- in a nutshell, the conventional approach for a meta-analytic analysis (Cooper and Hedges 1994, Egger et al. 1995, Stangl and Berry 2000, Borenstein et al. 2009:311) proceed as follows:
- let X_{i} denote the observed count of suicides in study i and $E\left(X_{i}\right)=\mu_{i}$ its corresponding expected value
- also, let P_{i} denote the person-years in study i
- Then, in meta-analysis a summary measure as a weighted average of the study-specific rates on log-scale is used:

$$
\sum_{i=1}^{n} w_{i} \log \left(X_{i} / P_{i}\right) / \sum_{i=1}^{n} w_{i}
$$

where w_{i} is a proxy estimate of the inverse variance, here $w_{i}=Y_{i}$ leading to

$$
\sum_{i=1}^{n} Y_{i} \log \left(X_{i} / P_{i}\right) / \sum_{i=1}^{n} Y_{i}
$$

conventional meta-analysis

- another approach (Barendregt et al. 2013) works on the rate scale
- an attractive choice for w_{i} in

$$
\sum_{i=1}^{n} w_{i}\left(X_{i} / P_{i}\right) / \sum_{i=1}^{n} w_{i}
$$

is

$$
w_{i}=P_{i}
$$

- this is in the Mantel-Haenszel philosophy weighting with the denominator (here the person-years) leading to

$$
\hat{\lambda}=\sum_{i=1}^{n} X_{i} / \sum_{i=1}^{n} P_{i}
$$

as a summary estimate of the overall rate λ

conventional meta-analysis

- a benefit of the Mantel-Haenszel approach here is that the variance of $\hat{\lambda}$ is easy to calculate:

$$
\begin{gathered}
\operatorname{Var}(\hat{\lambda})=\operatorname{Var}\left(\sum_{i=1}^{n} X_{i} / \sum_{i=1}^{n} P_{i}\right) \\
=\sum_{i=1}^{n} \lambda P_{i} /\left(\sum_{i=1}^{n} P_{i}\right)^{2}
\end{gathered}
$$

- which is estimated as

$$
\hat{\lambda} / \sum_{i=1}^{n} P_{i}
$$

- using this technique we find an overall rate of 44.51 suicides per 100,000 person years with a $95 \% \mathrm{Cl}$ of $33.60-55.42$

problem with the conventional approach

- any of these conventional approaches cope with zero-event studies missing
- hence we need to turn to other ideas
the idea of capture-recapture
- objective is to determine the size N of an elusive target population
- some mechanism (life trapping, register, surveillance system) identifies a unit repeatingly
- there is a count X informing about the number of identifications of each unit in the target population

sample

available: sample

$$
X_{1}, X_{2}, \ldots, X_{N}
$$

leading to

Table: Frequency distribution of count X of repeated identifications

$$
\begin{array}{|c|cccccc|c|}
\hline x & 0 & 1 & 2 & 3 & 4 & \ldots & \text { population size } \\
f_{x} & f_{0} & f_{1} & f_{2} & f_{3} & f_{4} & \ldots & N \\
\hline
\end{array}
$$

problem

if $X_{i}=0$ unit is not observed leading to a reduced observable sample

$$
X_{1}, X_{2}, \ldots, X_{n}
$$

where - w.l.g. - we assume that

$$
X_{n+1}=X_{n+2}=\ldots=X_{N}=0
$$

Table: Frequency distribution of count X of repeated identifications

$$
\begin{array}{|c|cccccc|c|}
\hline x & 0 & 1 & 2 & 3 & 4 & \ldots & \text { observed size } \\
f_{x} & - & f_{1} & f_{2} & f_{3} & f_{4} & \ldots & n \\
\hline
\end{array}
$$

hence

$$
f_{0}=N-n \text { is unknown }
$$

why does data set fit into the capture-recapture setting?

- target population: studies on bariatric surgery with or without completed suicide
- identifying mechanism: online web-search including databases PubMed (PM), Web of Knowledge (WK), PsychInfo (PI), ScienceDirect (SD) and Google Scholar (GS)
- X_{i} number of completed suicides in study i : can be viewed as the count of repeated identifications for study i

modelling

- to cope with missing zeros we need to involve modelling
- $p_{x}=P(X=x)$ for $x=0,1,2, \cdots$ base model
- for example Poisson :

$$
p_{x}=\exp (-\mu) \mu^{x} / x!=\exp (-\lambda P)(\lambda P)^{x} / x!
$$

λ suicide rate, P person-time, $\mu=\lambda P$

Table: Frequency distribution of count X of repeated identifications

$$
\begin{array}{|l|cccccc|c|}
\hline x & 0 & 1 & 2 & 3 & 4 & \ldots & m \\
f_{x} & - & f_{1} & f_{2} & f_{3} & f_{4} & \ldots & f_{m} \\
p_{x} & p_{0} & p_{1} & p_{2} & p_{3} & p_{4} & \ldots & p_{m} \\
\hline
\end{array}
$$

modelling

- need to incorporate study-specific person-times
- $p_{i x}=P\left(X_{i}=x \mid P_{i}\right)$ probab. for x events in study with person-time P_{i}
- for example Poisson :

$$
p_{i x}=\exp \left(-\lambda P_{i}\right)\left(\lambda P_{i}\right)^{x} / x!
$$

λ suicide rate, P_{i} person-time in study $i, \mu=\lambda P$

- complete data likelihood

$$
\prod_{i=1}^{n} \prod_{x=0}^{m} p_{i x}^{f_{i x}}
$$

where $f_{i x}$ is the frequency of studies with person-time P_{i} and event count x

- in our case, for given P_{i} the frequency $f_{i x}$ is zero except for one value of x where it is one

EM philosophy: E-step

$f_{i 0}$ is unknown and needs to be replaced by its expected value: E-step there is a general solution for the E-step:

$$
e_{i 0}:=E\left(f_{i 0} \mid f_{i 1}, \cdots, f_{i n} ; P_{i}\right)=N_{i} p_{i 0}
$$

where N_{i} is the population size of studies with person-time P_{i}
it follows that

$$
e_{i 0}=N_{i} p_{i 0}=\left(n_{i}+e_{i}\right) p_{i 0}
$$

where $n_{i}=f_{i 1}+\cdots+f_{\text {in }}$ ($=1$ in our case)
it follows further that

$$
e_{i 0}=n_{i} \frac{p_{i 0}}{1-p_{i 0}}
$$

which replaces $f_{i 0}$ in the complete, unobserved likelihood leading to the complete, expected likelihood

EM philosophy: E-step

note the relationship to the Horvitz - Thompson estimator:

$$
\hat{N}_{i}=n_{i}+e_{i 0}=n_{i}+n_{i} \frac{p_{i 0}}{1-p_{i 0}}=\frac{n_{i}}{1-p_{i 0}}
$$

and

$$
\hat{N}=\sum_{i=1}^{n} \hat{N}_{i}=\sum_{i=1}^{n} \frac{n_{i}}{1-p_{i 0}}
$$

in the case study we have that $n_{i}=1$ for $i=1, \cdots, n$
the E-step provides as by - product the item we are most interested in: the count of studies with no suicides, alternatively, the total number of studies

EM philosophy: M-step

we need to maximize the complete, expected data likelihood

$$
\prod_{i=1}^{n} \prod_{x=1}^{m} p_{i x}^{f_{i x}} p_{i 0}^{e_{i 0}}
$$

the solution will depend on the model used: in the Poisson case the complete data log-likelihood is

$$
\sum_{i=1}^{n} \sum_{x=1}^{m} f_{i x}\left[-\mu_{i}+x \log \mu_{i}\right]-e_{i 0} \mu_{i}
$$

with $\mu_{i}=\lambda P_{i}$ which is maximized for

$$
\hat{\lambda}=\frac{\sum_{i=1}^{n} \sum_{x=1}^{m} \times f_{i x}}{\sum_{i=1}^{n}\left(\sum_{x=1}^{m} P_{i} f_{i x}+P_{i} e_{i 0}\right)}
$$

EM philosophy

now, the EM algorithm toggles between E- and M-step until convergence

$$
\text { E-step } \longleftrightarrow \text { M-step }
$$

```
start rate MH: 0.0004451183
step: 1 rate: 0.000353999 size: 121.9951
step: 2 rate: 0.000329974 size: 129.6188
step: 3 rate: 0.000321995 size: 132.4051
step: 4 rate: 0.000319157 size: 133.4304
step: 5 rate: 0.000318122 size: 133.8086
step: }14\mathrm{ rate: 0.0003175201 size: 134.03
step: 15 rate: 0.0003175201 size: 134.03
```

Table 2 List of papers included for the estimate of the suicide rate in decreasing order of person-years

	Person-years	Weight	\# of patients	\# of women	\# of suicides	Country
Adams	77,602	0.5397	9,949	8,556	21	USA
Marceau	10,388	0.0722	1,423	1,025	6	Canada
Marsk	8,877	0.0617	1,216	0	4	Sweden
Pories	8,316	0.0578	594	494	3	USA
Carelli	6,057	0.0421	2,909	1,989	1	USA
Busetto	4,598	0.0320	821	618	1	Italy
Smith 1995 (51)	3,882	0.0270	1,762	1,567	2	USA
Peeters	3.478	0.0242	966	744	1	Australia
Christou	2,599	0.0181	228	187	2	Canada
Günther	2,244	0.0156	98	82	1	Germany
Capella	2,237	0.0156	888	730	3	USA
Suter 2011 (31)	2,152	0.0150	379	282	3	Switzerland
Suter 2006 (32)	1,639	0.0114	311	269	1	Switzerland
Van de Weijgert	1,634	0.0114	200	174	1	Netherlands
Cadière	1,362	0.0095	470	392	1	Belgium
Mitchell	1,121	0.0078	85	72	1	USA
Himpens	1,066	0.0074	82	74	1	Belgium
Nāslund 1994 (38)	799	0.0056	85	69	2	Sweden
Forsell	761	0.0053	326	248	1	Sweden
Powers 1997 (55)	747	0.0052	131	111	1	USA
Kral	477	0.0033	69	56	1	USASweden
Năslund 1995 (35)	457	0.0032	142	84	1	Sweden
Powers 1992 (52)	395	0.0027	100	85	1	USA
Smith 2004 (50)	354	0.0025	779		1	USA
Nocca	228	0.0016	133	90	1	France
Svenheden	166	0.0012	91	72	1	Sweden
Pekkarinen	146	0.0010	27	19	1	Finland

The column entitled 'weight' is the fraction of the total number of person-years and is used in the analysis for comparing the estimated suicide rate for patients after a bariatric operation with the rate for an equivalent general population.

EM philosophy: full set of covariates

here an illustration in the Poisson case

$$
p_{i x}=P\left(X_{i}=x \mid \beta ; \mathbf{z}_{\mathbf{i}}\right)=\exp \left(-\mu_{i}\right) \mu_{i}^{x} / x!
$$

and

$$
\log \mu_{i}=\beta^{T} \mathbf{z}_{\mathbf{i}}
$$

if there are only person-times

$$
\log \mu_{i}=\log \lambda+\log P_{i}
$$

EM philosophy

complete data likelihood - with covariates

$$
\prod_{i=1}^{n} \prod_{x=0}^{m} p_{i x}^{f_{i x}}
$$

where

- $p_{i x}=P\left(X_{i}=x \mid \beta ; \mathbf{z}_{\mathbf{i}}\right)$
- $\mathbf{z}_{\mathbf{i}}$ represents the i-th covariate combination for $i=1, \cdots, n$
- $f_{i x}$ is the frequency of observed counts equal to x for the i-th covariate combination
- $f_{i 0}$ remains unknown

E-step

we have

$$
e_{i 0}=n_{i} \frac{p_{i 0}}{1-p_{i 0}}
$$

with $p_{i 0}=P\left(X_{i}=0 \mid \beta ; \mathbf{z}_{\mathbf{i}}\right)$

M-step

to maximize

$$
\prod_{i=1}^{n} \prod_{x=1}^{m} p_{i x}^{f_{i x}} p_{i 0}^{e_{i 0}}
$$

this is model dependent; in the Poisson case with log-link

$$
p_{i x}=P\left(X_{i}=x \mid \beta ; \mathbf{z}_{\mathbf{i}}\right)=\exp \left(-\mu_{i}\right) \mu_{i}^{\times} / x!
$$

with $\log \mu_{i}=\beta^{T} \mathbf{z}_{\mathbf{i}}$

M-step for the Poisson case with only person-times

$$
p_{i j}=P\left(X_{i}=j \mid \beta ; \mathbf{z}_{\mathbf{i}}\right)=\exp \left(-\mu_{i}\right) \mu_{i}^{j} / j!
$$

and

$$
\mu_{i}=\exp (\eta+\underbrace{\log P_{i}}_{\text {log-person-times become offset }})
$$

so, here simply

$$
\mu_{i}=\exp \left(\beta^{T} \mathbf{z}_{\mathbf{i}}\right)=\exp \left(\eta+\log P_{i}\right)
$$

where η is the log-rate

alternatives to the EM philosophy

- use the observed, zero-truncated likelihood directly:

$$
\prod_{i=1}^{n} \prod_{x=1}^{m}\left(\frac{p_{i x}}{1-p_{i 0}}\right)^{f_{i x}}
$$

where $p_{i x}=P\left(X_{i}=x \mid \beta ; \mathbf{z}_{\mathbf{i}}\right)$ as before

- depends on the chosen model (Poisson, geometric, binomial, negative-binomial,...)
- use favorite algorithm such as NR, FS, or GN
- retrieve effect estimate $\hat{\beta}$
population size estimation with Horvitz-Thompson

Horvitz - Thompson estimator

$$
\hat{N}=\sum_{i=1}^{N} I_{i} / w_{i}
$$

where

- I_{i} is an indicator if the i-th study of the population of target studies is observed
- $w_{i}=P\left(I_{i}=1\right)=1-P\left(I_{i}=0\right)=1-p_{i 0}=1-P\left(X_{i}=0 \mid \hat{\beta} ; \mathbf{z}_{\mathbf{i}}\right)$
- under Poisson: $w_{i}=1-\exp \left(-\mu_{i}\right)$ and $\hat{\mu}_{i}=\exp \left(\hat{\beta}^{T} \mathbf{z}_{\mathbf{i}}\right)$
so that

$$
\hat{N}=\sum_{i=1}^{n} 1 /\left[1-\exp \left(\hat{\beta}^{T} \mathbf{z}_{\mathbf{i}}\right)\right]
$$

study population size estimation

so, in case we have use only person-times as offset

$$
\hat{N}=\sum_{i=1}^{n} 1 /\left[1-\exp \left(-\exp \left(\hat{\eta}+\log P T_{i}\right)\right)\right]
$$

for the data

$$
\hat{N}=\sum_{i=1}^{n} 1 /\left[1-\exp \left(\exp \left(\hat{\eta}+\log P T_{i}\right)\right]=134\right.
$$

total studies with and without completed suicide after bariatric surggery

Table 2 List of papers included for the estimate of the suicide rate in decreasing order of person-years

	Person-years	Weight	\# of patients	\# of women	\# of suicides	Country
Adams	77,602	0.5397	9,949	8,556	21	USA
Marceau	10,388	0.0722	1,423	1,025	6	Canada
Marsk	8,877	0.0617	1,216	0	4	Sweden
Pories	8,316	0.0578	594	494	3	USA
Carelli	6,057	0.0421	2,909	1,989	1	USA
Busetto	4,598	0.0320	821	618	1	Italy
Smith 1995 (51)	3,882	0.0270	1,762	1,567	2	USA
Peeters	3,478	0.0242	966	744	1	Australia
Christou	2,599	0.0181	228	187	2	Canada
Günther	2,244	0.0156	98	82	1	Germany
Capella	2,237	0.0156	888	730	3	USA
Suter 2011 (31)	2,152	0.0150	379	282	3	Switzerland
Suter 2006 (32)	1,639	0.0114	311	269	1	Switzerland
Van de Weijgert	1,634	0.0114	200	174	1	Netherlands
Cadière	1,362	0.0095	470	392	1	Belgium
Mitchell	1,121	0.0078	85	72	1	USA
Himpens	1,066	0.0074	82	74	1	Belgium
Nāslund 1994 (38)	799	0.0056	85	69	2	Sweden
Forsell	761	0.0053	326	248	1	Sweden
Powers 1997 (55)	747	0.0052	131	111	1	USA
Kral	477	0.0033	69	56	1	USASweden
Năslund 1995 (35)	457	0.0032	142	84	1	Sweden
Powers 1992 (52)	395	0.0027	100	85	1	USA
Smith 2004 (50)	354	0.0025	779		1	USA
Nocca	228	0.0016	133	90	1	France
Svenheden	166	0.0012	91	72	1	Sweden
Pekkarinen	146	0.0010	27	19	1	Finland

The column entitled 'weight' is the fraction of the total number of person-years and is used in the analysis for comparing the estimated suicide rate for patients after a bariatric operation with the rate for an equivalent general population.

practical modelling

Table: Linear predictors considered

Linear predictor	Proportion of women	Country of origin	Interaction	log-person-time as offset
0	No	No	No	No
1	No	No	No	Yes
2	Yes	No	No	Yes
3	No	Yes	No	Yes
4	Yes	Yes	No	Yes
5	Yes	Yes	Yes	Yes

Table: Values of the maximised log-likelihood, number of parameters, and BIC statistic s for models under consideration.

Distribution	LP	Maximised log-likelihood	Number of parameters	BIC
Poisson	5	-22.7	4	58.6
	4	-23.0	3	55.9
	3	-23.0	2	52.6
	2	-23.4	2	53.4
	$\mathbf{1}$	-23.7	1	$\mathbf{5 0 . 7}$
	0	-68.7	1	139.9
Negative-	5	-22.7	5	61.9
	3	-23.0	4	59.2
	2	-23.0	3	55.9
	1	-23.4	3	56.7
	0	-23.7	2	54.0

uncertainty assessment with the bootstrap

- in principle, we have a population of size N
- for each element i we have an indicator l_{i} telling us if element i has been sampled or not

$$
I_{i}= \begin{cases}1, & \text { if sampled } \\ 0, & \text { otherwise }\end{cases}
$$

where $i=1, \ldots, N$

- the classical nonparametric bootstrap would then consider random samples with replacement from I_{1}, \ldots, I_{N}
- problem is that we have only observed n out of N
- using the observed sample I_{1}, \ldots, I_{n} for the bootstrap would underestimate the variability of \hat{N}
- the idea is to impute N using \hat{N}

uncertainty assessment with the bootstrap

Horvitz - Thompson estimator

$$
\hat{N}=\sum_{i=1}^{N} I_{i} / \hat{w}_{i}
$$

where

- $\hat{w}_{i}=\hat{P}\left(I_{i}=1\right)=1-\hat{P}\left(I_{i}=0\right)$
- under Poisson: $\hat{w}_{i}=1-\exp \left(-\hat{\mu}_{i}\right)$ and $\hat{\mu}_{i}=\exp \left(\hat{\beta}^{T} \mathbf{z}_{\mathbf{i}}\right)$
- or $\hat{N}=\sum_{i=1}^{n} 1 /\left[1-\exp \left(-\exp \left(\hat{\beta}^{T} \mathbf{z}_{\mathbf{i}}\right)\right]\right.$
- this gives our imputed sample $I_{1}, \ldots I_{n}, \ldots I_{\hat{N}}$
- note that $I_{n+1}, \ldots I_{\hat{N}}$ are all zero (\hat{N} needs to be rounded)

uncertainty assessment with the bootstrap

finally

- we can consider bootstrap samples $I_{1}^{*}, \ldots I_{\hat{N}}^{*}$
- note that there is now variability in the observed sample size n
- as all elements in the bootstrap sample with zero counts are truncated, it does not matter that we have no covariate information on the truncated counts
- using the zero-truncated bootstrap sample we estimate \hat{N}^{*}
- this process is repeated B times ($B=25,000$ for example)

distribution of total studies

- median $=133$ studies on bariatic surgery with or without completed suicide
- 95% percentile confidence interval: $93-167$ (red vertical bars)

uncertainty assessment with the bootstrap

- in a similar way a 95% percentile confidence interval for the suicide rate is computed
- $24.84-49.39$ per 100,000 person years
- with median rate of 31.86 per 100,000 person years
- for comparison: the unadjusted rate is 44.51 per 100,000 person years

acknowledgments

- joint work with Layna Dennett and Antony Overstall (University of Southampton)
- a paper version is available at:
- Layna Charlie Dennett, Antony Overstall, Dankmar Böhning (2023): Zero-Truncated Modelling Meta-Analysis for When Studies with No Events Are Systematically Excluded: Estimating Completed Suicide After Bariatric Surgery. https://arxiv.org/abs/2305.01277

further issues: one-inflation

further issues: one-inflation

Figure: The Guardian 30 Dec 2016: "Thousands of drink-drivers offend again"

drink-driving in Britain

- drink-driving (DD) relates to driving (or attempting to drive) while being above the legal alcohol limit
- according to the Guardian (30/12/16): 219,000 motorist were caught once, 8,068 twice, etc. (see Table below)

Table: Frequency distribution of the count (per person) of DVLA reported drink-driving (DD) in the UK between 2011 and 2015 (figures are based on DR10 endorsements)

count of DD	f_{0}	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	n
frequency		219,008	8,068	449	46	5	2	227,578

Figure: One-inflation distorts the Poisson fit

Figure: One-inflation distorts the Poisson fit

a synthetic example

- 500 counts sampled from $P o(1)$
- 500 extra-counts of 1 so that $N=1,000$
- $\hat{\lambda}=0.4091$ and

$$
\mathrm{HTE}=\frac{n}{1-\exp (-\hat{\lambda})}=\frac{824}{1-\exp (-0.4091)}=2454
$$

Table: one-inflated Poisson data

f_{0}	f_{1}	f_{2}	f_{3}	f_{4+}	n
176	690	95	32	7	824

- one-inflation leads to $\hat{\lambda} \ll \lambda$
- Horvitz-Thompson estimator $n \frac{1}{1-\exp (-\hat{\lambda})} \gg N$
- as $g(\lambda)=\frac{1}{1-\exp (-\lambda)}$ strictly decreasing

two processes

- do not know the size: zero - truncation
- many counts of ones (singletons): one - inflation
this can be modelled as

$$
(1-w) \iota_{1}(x)+\frac{w}{1-p(0 ; \theta)} p(x ; \theta)
$$

GOF in the case study

Table: Frequency distribution for observed and fitted count of completed suicide under zero-truncated Poisson with offset for person-times; $\chi_{(2)}^{2}=1.59$ and $p-$ value $=0.45$

count of completed suicide	0	1	2	3	$4+$
observed frequency f_{x}	-	18	3	3	3
fitted frequency \hat{f}_{x}	-	18.3	4.5	1.7	2.5

how to present fitted frequency for complex model

suppose a model (here for a Poisson with log-link) the has been fitted leading to

$$
\hat{\mu}_{i}=\exp \left(\hat{\beta}^{T} \mathbf{z}_{\mathbf{i}}\right)
$$

for unit i in the sample, then:

$$
\hat{f}_{x}=\sum_{i=1}^{n} \exp \left(-\hat{\mu}_{i}\right) \hat{\mu}_{i}^{x} / x!
$$

Article

The covariate-adjusted frequency plot

Heinz Holling ${ }^{1}$, Walailuck Böhning ${ }^{1}$, Dankmar Böhning ${ }^{2}$, and Anton K Formann ${ }^{3, \dagger}$

alternative: Bayes

- posterior \propto likelihood \times prior
- in our case

$$
\pi\left(\lambda \mid x_{1}, \cdots, x_{n}\right) \propto \underbrace{\prod_{i} \frac{\exp \left(-\lambda P_{i}\right)}{1-\exp \left(-\lambda P_{i}\right)}\left(\lambda P_{i}\right)^{x_{i}}}_{z T-\text { Poisson-likelihood }} \times \underbrace{\pi(\lambda)}_{\text {prior }}
$$

- or

$$
\pi\left(\lambda \mid x_{1}, \cdots, x_{n}\right)=\frac{\prod_{i} \frac{\left(\lambda P_{i}\right)^{x_{i}}}{\exp \left(-\lambda P_{i}\right)-1} \times \pi(\lambda)}{\int_{\lambda} \prod_{i} \frac{\left(\lambda P_{i}\right)^{x_{i}}}{\exp \left(-\lambda P_{i}\right)-1} \times \pi(\lambda) d \lambda}
$$

priors

- non-informative $\pi(\lambda)=1$
- 95% CI: $23.14-43.20$ per 100,000 person years
- posterior median 31.75 per 100, 000 person years
- more interesting are the population sizes
- $95 \% \mathrm{CI}$: $103-178$ with posterior median of 134 studies

priors

- non-informative but proper $\log \lambda \sim N\left(0,1000^{2}\right)$
- $95 \% \mathrm{CI}: 23.47-43.17$ per 100, 000 person years
- posterior median 31.66 per 100, 000 person years
- more interesting the population sizes
- $95 \% \mathrm{CI}$: $103-175$ with posterior median of 134 studies
- for comparison with $\pi(\lambda)=1$:
- $95 \% \mathrm{Cl}$: $103 \mathbf{- 1 7 8}$ with posterior median of 134 studies

priors

- Jeffreys invariance prior $\pi(\lambda) \propto \sqrt{\text { Fisher information }}=\sqrt{\left(\sum_{i} P_{i}\right) / \lambda}$
- $95 \% \mathrm{CI}: 104-181$ with posterior median of 133 studies
- for comparison with $\pi(\lambda)=1$:
- $95 \% \mathrm{CI}$: $103-178$ with posterior median of 134 studies

Figure: left: Jeffreys invariance prior

right: non-informative improper prior

overview

Table: all methods for estimating the total size of studies in a nutshell

method	median	$95 \% \mathrm{Cl}$
MLE with bootstrap	133	$93-167$

Bayes prior:
improper non-informative 134 103-178
log-normal
134 103-175
Jeffreys
133 104-181

Table: a final point: model (likelihood) assessment is essential

Distribution	LP	BIC	pop size
	5	58.6	125
	4	55.9	119
Poisson	3	52.6	118
	2	53.4	134
	1	50.7	134
	$\mathbf{0}$	139.9	31

Table: recall: linear predictors considered

Linear predictor	Proportion of women	Country of origin	Interaction	log-person-time as offset
0	No	No	No	No
1	No	No	No	Yes
2	Yes	No	No	Yes
3	No	Yes	No	Yes
4	Yes	Yes	No	Yes
5	Yes	Yes	Yes	Yes

[^0]: T +4410$)^{2} 380587385$
 E:pgrapplystis@outhamptonar uk
 Col wiwwsouthampran:ac.uks-2rypgp

