Applications of Uni-List Capture-Recapture Methods in Meta-Analysis

Dankmar Böhning Southampton Statistical Sciences Research Institute and Mathematical Sciences, University of Southampton, UK

Research Programmes

Southampton Statistical Sciences Research Institute (S3RI)

S3RI brings together staff from across the University for research in methods and applications of statistics.

Key facts

Unless otherwise stated

English langungen ELTS-6, swith minimum of 5,5 mach component, or an equivalent structured in their quality according proved by the United to a chieved with their quality according to the structure of the United to Distriction up to the upwars (Full-English per too according to the dependent on funding route integrated PRO, PRO, 143 Structures: Experiment (Integrated PRO, PRO, 143 Structures: Experiment (Integrated PRO, PRO, 143 Structures: Experiment (Integrated PRO, PRO, 143)

res: www.soutrampion.ac.uypgreesandrond

Find out more

T :+44(0)2380997385 E :pgrapply.fshs@southamptonac.uk I www.southampton.ac.uk/syr/jpgp

204 Southampton Statistical Sciences Research Institute (S₃R)

CBeing a part of SaRI isone of the most significant milestones in my career. The courses. delivered by excellent professionals from the University of Southampton and abroad provided good insights into statistics. I have no doubt that SaRI will continue to grow and enrich with its highly qualified and professional academic staff. It hasbeen a pleasure to be part of this prestigious group. >>

Carla Azevedo SgRIPhD student

PhD Statistics

We have alwey and thring community of portgraduate students argued in reaser before as a ringe of answ and we support than actionality. Supervisors, whose international appress in that have, provide in-depart training YourNiba given personal computer, advask in astrand office and a comference attendance allowance. We offer a runnbar of comparities studentify is becover fees and costor fring. The your of hunding benefits on the one given and data.

Keyfacts:additional information

Entry requirements: Inst- or upper second-classbachelor degree in a relevent mathematical subject (furfour year PhD), Maters in a relevent mathematical subject of this or uppersecond classidgree (for PhD) in a relevant mathematical subject at Mirkthor MPhys level or equivalent, or satisfactory parformance at interview

Assessment: progression from year one to year two or integrated PhDby bught courses, annual reports, confirmation (for PhD averd), thesis and vive* Closing date: none, but funding decisions will be made from mid-March

Funding: www.southampton.ac.uk/maths/postgraduate/ fees_and_funding.page

PhD Social Statistics

SocialStatistics at Southampton has been awarded Doctoral TrainingCentre status by the ESRC. Full funding is available for strong applicants wishing to undertake frontier research.

Keyfacts:additional information

Entry requirements: first-or upper second-classdagrae (+3 routa). First-or upper second-classdagrae plusa masterisat mark lavel (+3) in a relatent subject or equivalent qualitations plus satisfactory performance at interview

Assessment: progression from year one-on-in-yby examination haugh courses, annual reports, confirmation (from PD award), thesis and view Closing date: rone, bitwarty application advised Funding: may beauxible kith rough University's Visa-Chancellor's Scholarship programma Additiobal costs': Tableoris, and interest do hotoconving. etc.

some help may be provided
* For more information on continued assessment

throughoutyour sessarch programme, sae page 19

Research them es

Biostatistics www.southampton.ac.uk/gr@biostatistics

Design of experiments www.southampton.ac.ulp/grijksperiments

Policy and evaluation www.southam.pton.ac.uk/sprijbolicyanderafuation

Statistical modelling www.southampton.ac.uk/sgr@hodeling

Surveymethods www.southampton.ac.uk/isriikurveymethod

Southampton Statistical Sciences Research Institute (SgR) 205

Obesity Treatment

Risk of completed suicide after bariatric surgery: a systematic review

C. Peterhänsel^{1,2}, D. Petroff^{3,4}, G. Klinitzke^{1,2}, A. Kersting¹ and B. Wagner^{1,2}

Case-study: Obesity Treatment

Risk of completed suicide after bariatric surgery: a systematic review

- bariatric surgery is one of the most effective treatments for morbid obesity, indicating a significant long-term weight loss
- while overall mortality decreases in patients who received bariatric surgery, risk of suicide is still an issue
- Peterhänsel et al. (2013) undertake a meta-analysis on completed suicide after bariatric surgery
- 27 studies are included in the analysis

	Person-years	Weight	# of patients	# of women	# of suicides	Country
Adams	77,602	0.5397	9,949	8,556	21	USA
Marceau	10,388	0.0722	1,423	1,025	6	Canada
Marsk	8,877	0.0617	1,216	0	4	Sweden
Pories	8,316	0.0578	594	494	3	USA
Carelli	6,057	0.0421	2,909	1,989	1	USA
Busetto	4,598	0.0320	821	618	1	Italy
Smith 1995 (51)	3,882	0.0270	1,762	1,567	2	USA
Peeters	3,478	0.0242	966	744	1	Australia
Christou	2,599	0.0181	228	187	2	Canada
Günther	2,244	0.0156	98	82	1	Germany
Capella	2,237	0.0156	888	730	3	USA
Suter 2011 (31)	2,152	0.0150	379	282	3	Switzerland
Suter 2006 (32)	1,639	0.0114	311	269	1	Switzerland
Van de Weijgert	1,634	0.0114	200	174	1	Netherlands
Cadière	1,362	0.0095	470	392	1	Belgium
Mitchell	1,121	0.0078	85	72	1	USA
Himpens	1,066	0.0074	82	74	1	Belgium
Nāslund 1994 (38)	799	0.0056	85	69	2	Sweden
Forsell	761	0.0053	326	248	1	Sweden
Powers 1997 (55)	747	0.0052	131	111	1	USA
Kral	477	0.0033	69	56	1	USA/Sweden
Näslund 1995 (35)	457	0.0032	142	84	1	Sweden
Powers 1992 (52)	395	0.0027	100	85	1	USA
Smith 2004 (50)	354	0.0025	779		1	USA
Nocca	228	0.0016	133	90	1	France
Svenheden	166	0.0012	91	72	1	Sweden
Pekkarinen	146	0.0010	27	19	1	Finland

Table 2 List of papers included for the estimate of the suicide rate in decreasing order of person-years

The column entitled 'weight' is the fraction of the total number of person-years and is used in the analysis for comparing the estimated suicide rate for patients after a bariatric operation with the rate for an equivalent general population.

Case-study: Obesity Treatment

Risk of completed suicide after bariatric surgery: a systematic review

- selection bias issue: only studies with completed suicide are included
- Peterhänsel et al. (2013):

The most crucial point in the analysis was the proper treatment of the selection bias because of the method of finding papers.

• hence, suicide rate will be *overestimated* (potentially substantially)

conventional meta-analysis

- in a nutshell, the conventional approach for a meta-analytic analysis (Cooper and Hedges 1994, Egger *et al.* 1995, Stangl and Berry 2000, Borenstein *et al.* 2009:311) proceed as follows:
- let X_i denote the observed count of suicides in study *i* and $E(X_i) = \mu_i$ its corresponding expected value
- also, let P_i denote the person-years in study i
- Then, in meta-analysis a summary measure as a weighted average of the study-specific rates on log-scale is used:

$$\sum_{i=1}^n w_i \log(X_i/P_i) / \sum_{i=1}^n w_i$$

where w_i is a proxy estimate of the inverse variance, here $w_i = Y_i$ leading to

$$\sum_{i=1}^n Y_i \log(X_i/P_i) / \sum_{i=1}^n Y_i$$

conventional meta-analysis

- another approach (Barendregt et al. 2013) works on the rate scale
- an attractive choice for w_i in

$$\sum_{i=1}^n w_i(X_i/P_i)/\sum_{i=1}^n w_i$$

is

$$w_i = P_i$$

• this is in the Mantel-Haenszel philosophy weighting with the denominator (here the person-years) leading to

$$\hat{\lambda} = \sum_{i=1}^{n} X_i / \sum_{i=1}^{n} P_i$$

as a summary estimate of the overall rate λ

conventional meta-analysis

 a benefit of the Mantel-Haenszel approach here is that the variance of λ̂ is easy to calculate:

$$Var(\hat{\lambda}) = Var(\sum_{i=1}^{n} X_i / \sum_{i=1}^{n} P_i)$$
$$= \sum_{i=1}^{n} \lambda P_i / (\sum_{i=1}^{n} P_i)^2$$

which is estimated as

 using this technique we find an overall rate of 44.51 suicides per 100,000 person years with a 95% CI of 33.60 – 55.42

problem with the conventional approach

- any of these conventional approaches cope with zero-event studies missing
- hence we need to turn to other ideas

the idea of capture-recapture

- objective is to determine the size N of an elusive target population
- some mechanism (life trapping, register, surveillance system) identifies a unit repeatingly
- there is a count X informing about the number of identifications of each unit in the target population

sample

available: sample

 X_1, X_2, \dots, X_N

leading to

Table: Frequency distribution of count X of repeated identifications

x	0	1	2	3	4	 population size
f_{x}	f_0	f_1	<i>f</i> ₂	f ₃	<i>f</i> ₄	 N

problem

if $X_i = 0$ unit is not observed leading to a reduced observable sample

 $X_1, X_2, ..., X_n$

where - w.l.g. - we assume that

$$X_{n+1} = X_{n+2} = \dots = X_N = 0$$

Table: Frequency distribution of count X of repeated identifications

x	0	1	2	3	4	 observed size
f_{x}	-	f_1	<i>f</i> ₂	f ₃	<i>f</i> 4	 п

hence

 $f_0 = N - n$ is unknown

why does data set fit into the capture-recapture setting?

- target population: *studies* on bariatric surgery with or without completed suicide
- identifying mechanism: online web-search including databases PubMed (PM), Web of Knowledge (WK), PsychInfo (PI), ScienceDirect (SD) and Google Scholar (GS)
- X_i number of completed suicides in study *i*: can be viewed as the count of repeated identifications for study *i*

modelling

- · to cope with missing zeros we need to involve modelling
- $p_x = P(X = x)$ for $x = 0, 1, 2, \cdots$ base model
- for example *Poisson* :

$$p_x = \exp(-\mu)\mu^x/x! = \exp(-\lambda P)(\lambda P)^x/x!$$

 λ suicide rate, P person-time, $\mu = \lambda P$

Table: Frequency distribution of count X of repeated identifications

modelling

- need to incorporate study-specific person-times
- $p_{ix} = P(X_i = x | P_i)$ probab. for x events in study with person-time P_i
- for example *Poisson* :

$$p_{ix} = \exp(-\lambda P_i)(\lambda P_i)^x/x!$$

 λ suicide rate, P_i person-time in study i, $\mu = \lambda P$

• complete data likelihood

$$\prod_{i=1}^{n}\prod_{x=0}^{m}p_{ix}^{f_{ix}}$$

where f_{ix} is the frequency of studies with person-time P_i and event count x

• in our case, for given P_i the frequency f_{ix} is zero except for one value of x where it is one

EM philosophy: E-step

 f_{i0} is unknown and needs to be replaced by its expected value: E - step there is a general solution for the E-step:

$$e_{i0} := E(f_{i0}|f_{i1}, \cdots, f_{in}; P_i) = N_i p_{i0}$$

where N_i is the population size of studies with person-time P_i it follows that

$$e_{i0} = N_i p_{i0} = (n_i + e_i) p_{i0}$$

where $n_i = f_{i1} + \cdots + f_{in}$ (= 1 in our case)

it follows further that

$$e_{i0} = n_i \frac{p_{i0}}{1 - p_{i0}}$$

which *replaces* f_{i0} in the complete, unobserved likelihood leading to the complete, expected likelihood

EM philosophy: E-step

note the relationship to the *Horvitz* – *Thompson* estimator:

$$\hat{N}_i = n_i + e_{i0} = n_i + n_i \frac{p_{i0}}{1 - p_{i0}} = \frac{n_i}{1 - p_{i0}}$$

and

$$\hat{N} = \sum_{i=1}^{n} \hat{N}_i = \sum_{i=1}^{n} \frac{n_i}{1 - p_{i0}}$$

in the case study we have that $n_i = 1$ for $i = 1, \cdots, n$

the E-step provides as by - product the item we are most interested in: the count of studies with no suicides, alternatively, the total number of studies

EM philosophy: M-step

we need to maximize the complete, expected data likelihood

the solution will *depend* on the model used: in the *Poisson* case the complete data log-likelihood is

$$\sum_{i=1}^{n} \sum_{x=1}^{m} f_{ix} [-\mu_i + x \log \mu_i] - e_{i0} \mu_i$$

with $\mu_i = \lambda P_i$ which is maximized for

$$\hat{\lambda} = \frac{\sum_{i=1}^{n} \sum_{x=1}^{m} x f_{ix}}{\sum_{i=1}^{n} (\sum_{x=1}^{m} P_{i} f_{ix} + P_{i} e_{i0})}$$

EM philosophy

now, the EM algorithm toggles between E- and M-step until convergence

 $E\text{-step}\longleftrightarrow M\text{-step}$

start	rate MH:	0.0004451183	
step:	1 rate:	0.000353999 size:	121.9951
step:	2 rate:	0.000329974 size:	129.6188
step:	3 rate:	0.000321995 size:	132.4051
step:	4 rate:	0.000319157 size:	133.4304
step:	5 rate:	0.000318122 size:	133.8086
step:	14 rate:	0.0003175201 size	: 134.03
step:	15 rate:	0.0003175201 size	: 134.03

	Person-years	Weight	# of patients	# of women	# of suicides	Country
Adams	77,602	0.5397	9,949	8,556	21	USA
Marceau	10,388	0.0722	1,423	1,025	6	Canada
Marsk	8,877	0.0617	1,216	0	4	Sweden
Pories	8,316	0.0578	594	494	3	USA
Carelli	6,057	0.0421	2,909	1,989	1	USA
Busetto	4,598	0.0320	821	618	1	Italy
Smith 1995 (51)	3,882	0.0270	1,762	1,567	2	USA
Peeters	3,478	0.0242	966	744	1	Australia
Christou	2,599	0.0181	228	187	2	Canada
Günther	2,244	0.0156	98	82	1	Germany
Capella	2,237	0.0156	888	730	3	USA
Suter 2011 (31)	2,152	0.0150	379	282	3	Switzerland
Suter 2006 (32)	1,639	0.0114	311	269	1	Switzerland
Van de Weijgert	1,634	0.0114	200	174	1	Netherlands
Cadière	1,362	0.0095	470	392	1	Belgium
Mitchell	1,121	0.0078	85	72	1	USA
Himpens	1,066	0.0074	82	74	1	Belgium
Nāslund 1994 (38)	799	0.0056	85	69	2	Sweden
Forsell	761	0.0053	326	248	1	Sweden
Powers 1997 (55)	747	0.0052	131	111	1	USA
Kral	477	0.0033	69	56	1	USA/Sweden
Näslund 1995 (35)	457	0.0032	142	84	1	Sweden
Powers 1992 (52)	395	0.0027	100	85	1	USA
Smith 2004 (50)	354	0.0025	779		1	USA
Nocca	228	0.0016	133	90	1	France
Svenheden	166	0.0012	91	72	1	Sweden
Pekkarinen	146	0.0010	27	19	1	Finland

Table 2 List of papers included for the estimate of the suicide rate in decreasing order of person-years

The column entitled 'weight' is the fraction of the total number of person-years and is used in the analysis for comparing the estimated suicide rate for patients after a bariatric operation with the rate for an equivalent general population.

EM philosophy: full set of covariates

here an illustration in the Poisson case

$$p_{ix} = P(X_i = x | \beta; \mathbf{z}_i) = \exp(-\mu_i)\mu_i^x/x!$$

and

$$\log \mu_i = \beta^T \mathbf{z_i}$$

if there are only person-times

 $\log \mu_i = \log \lambda + \log P_i$

EM philosophy

complete data likelihood - with covariates

```
\prod_{i=1}^{n}\prod_{x=0}^{m}p_{ix}^{f_{ix}}
```

where

- $p_{ix} = P(X_i = x | \beta; \mathbf{z_i})$
- \mathbf{z}_i represents the *i*-th covariate combination for $i = 1, \cdots, n$
- f_{ix} is the frequency of observed counts equal to x for the *i*-th covariate combination
- f_{i0} remains unknown

E-step

we have

$$e_{i0} = n_i \frac{p_{i0}}{1 - p_{i0}}$$

with $p_{i0} = P(X_i = 0 | \beta; \mathbf{z_i})$

M-step

to maximize

 $\prod_{i=1}^n \prod_{x=1}^m p_{ix}^{f_{ix}} p_{i0}^{e_{i0}}$

this is model dependent; in the Poisson case with log-link

 $p_{ix} = P(X_i = x | \beta; \mathbf{z_i}) = \exp(-\mu_i)\mu_i^x / x!,$ with log $\mu_i = \beta^T \mathbf{z_i}$

M-step for the Poisson case with only person-times

$$p_{ij} = P(X_i = j | \beta; \mathbf{z_i}) = \exp(-\mu_i)\mu_i^j/j!$$

and

$$\mu_i = \exp(\eta + \underbrace{\log P_i}_{\text{log-person-times become offset}})$$

so, here simply

$$\mu_i = \exp(\beta^T \mathbf{z_i}) = \exp(\eta + \log P_i)$$

where η is the log-rate

alternatives to the EM philosophy

• use the observed, zero-truncated likelihood directly:

$$\prod_{i=1}^{n} \prod_{x=1}^{m} \left(\frac{p_{ix}}{1 - p_{i0}} \right)^{f_{ix}}$$

where $p_{ix} = P(X_i = x | \beta; \mathbf{z_i})$ as before

- depends on the chosen model (Poisson, geometric, binomial, negative-binomial,...)
- use favorite algorithm such as NR, FS, or GN
- retrieve effect estimate $\hat{\beta}$

population size estimation with Horvitz-Thompson

Horvitz - Thompson estimator

$$\hat{N} = \sum_{i=1}^{N} I_i / w_i$$

where

- *l_i* is an indicator if the i-th study of the population of target studies is observed
- $w_i = P(I_i = 1) = 1 P(I_i = 0) = 1 p_{i0} = 1 P(X_i = 0 | \hat{\beta}; \mathbf{z_i})$
- under Poisson: $w_i = 1 \exp(-\mu_i)$ and $\hat{\mu}_i = \exp(\hat{\beta}^T \mathbf{z}_i)$

so that

$$\hat{N} = \sum_{i=1}^{n} 1/[1 - \exp(\hat{\beta}^{T} \mathbf{z_{i}})]$$

study population size estimation

so, in case we have use only person-times as offset

$$\hat{N} = \sum_{i=1}^{n} 1/[1 - \exp(-\exp(\hat{\eta} + \log PT_i))]$$

for the data

$$\hat{N} = \sum_{i=1}^{n} 1/[1 - \exp(\exp(\hat{\eta} + \log PT_i))] = 134$$

total studies with and without completed suicide after bariatric surggery

	Person-years	Weight	# of patients	# of women	# of suicides	Country
Adams	77,602	0.5397	9,949	8,556	21	USA
Marceau	10,388	0.0722	1,423	1,025	6	Canada
Marsk	8,877	0.0617	1,216	0	4	Sweden
Pories	8,316	0.0578	594	494	3	USA
Carelli	6,057	0.0421	2,909	1,989	1	USA
Busetto	4,598	0.0320	821	618	1	Italy
Smith 1995 (51)	3,882	0.0270	1,762	1,567	2	USA
Peeters	3,478	0.0242	966	744	1	Australia
Christou	2,599	0.0181	228	187	2	Canada
Günther	2,244	0.0156	98	82	1	Germany
Capella	2,237	0.0156	888	730	3	USA
Suter 2011 (31)	2,152	0.0150	379	282	3	Switzerland
Suter 2006 (32)	1,639	0.0114	311	269	1	Switzerland
Van de Weijgert	1,634	0.0114	200	174	1	Netherlands
Cadière	1,362	0.0095	470	392	1	Belgium
Mitchell	1,121	0.0078	85	72	1	USA
Himpens	1,066	0.0074	82	74	1	Belgium
Nāslund 1994 (38)	799	0.0056	85	69	2	Sweden
Forsell	761	0.0053	326	248	1	Sweden
Powers 1997 (55)	747	0.0052	131	111	1	USA
Kral	477	0.0033	69	56	1	USA/Sweden
Näslund 1995 (35)	457	0.0032	142	84	1	Sweden
Powers 1992 (52)	395	0.0027	100	85	1	USA
Smith 2004 (50)	354	0.0025	779		1	USA
Nocca	228	0.0016	133	90	1	France
Svenheden	166	0.0012	91	72	1	Sweden
Pekkarinen	146	0.0010	27	19	1	Finland

Table 2 List of papers included for the estimate of the suicide rate in decreasing order of person-years

The column entitled 'weight' is the fraction of the total number of person-years and is used in the analysis for comparing the estimated suicide rate for patients after a bariatric operation with the rate for an equivalent general population.

Table: Linear predictors considered

Linear	Proportion	Country	Interaction	log-person-time
predictor	of women	of origin		as offset
0	No	No	No	No
1	No	No	No	Yes
2	Yes	No	No	Yes
3	No	Yes	No	Yes
4	Yes	Yes	No	Yes
5	Yes	Yes	Yes	Yes

Table: Values of the maximised log-likelihood, number of parameters, and BIC statistic s for models under consideration.

Distribution	LP	Maximised	Number of	BIC
		log-likelihood	parameters	
	5	-22.7	4	58.6
	4	-23.0	3	55.9
Poisson	3	-23.0	2	52.6
	2	-23.4	2	53.4
	1	-23.7	1	50.7
	0	-68.7	1	139.9
	5	-22.7	5	61.9
	4	-23.0	4	59.2
Negative-	3	-23.0	3	55.9
binomial	2	-23.4	3	56.7
	1	-23.7	2	54.0
	0	-38.7	2	84.0

- in principle, we have a population of size N
- for each element *i* we have an indicator *l_i* telling us if element *i* has been sampled or not

$$t_i = egin{cases} 1, \; ext{if sampled} \ 0, \; ext{otherwise} \end{cases}$$

where *i* = 1, ..., *N*

- the classical nonparametric bootstrap would then consider random samples with replacement from $I_1, ..., I_N$
- problem is that we have only observed n out of N
- using the observed sample I₁,..., I_n for the bootstrap would underestimate the variability of N
- the idea is to impute N using \hat{N}

Horvitz – Thompson estimator

$$\hat{N} = \sum_{i=1}^{N} I_i / \hat{w}_i$$

where

•
$$\hat{w}_i = \hat{P}(I_i = 1) = 1 - \hat{P}(I_i = 0)$$

- under Poisson: $\hat{w}_i = 1 \exp(-\hat{\mu}_i)$ and $\hat{\mu}_i = \exp(\hat{\beta}^T \mathbf{z}_i)$
- or $\hat{N} = \sum_{i=1}^{n} 1/[1 \exp(-\exp(\hat{\beta}^T \mathbf{z_i}))]$
- this gives our imputed sample $I_1, ..., I_n, ..., I_{\hat{N}}$
- note that $I_{n+1}, ..., I_{\hat{N}}$ are all zero (\hat{N} needs to be rounded)

finally

- we can consider bootstrap samples $I_1^*, ... I_{\hat{N}}^*$
- note that there is now variability in the observed sample size *n*
- as all elements in the bootstrap sample with zero counts are truncated, it does not matter that we have *no* covariate information on the truncated counts
- using the zero-truncated bootstrap sample we estimate \hat{N}^*
- this process is repeated B times (B = 25,000 for example)

- median = 133 studies on bariatic surgery with or without completed suicide
- 95% percentile confidence interval: 93 167 (red vertical bars)

- in a similar way a 95% percentile confidence interval for the suicide rate is computed
- 24.84 49.39 per 100,000 person years
- with median rate of 31.86 per 100,000 person years
- for comparison: the unadjusted rate is 44.51 per 100,000 person years

acknowledgments

- joint work with Layna Dennett and Antony Overstall (University of Southampton)
- a paper version is available at:
- Layna Charlie Dennett, Antony Overstall, Dankmar Böhning (2023): Zero-Truncated Modelling Meta-Analysis for When Studies with No Events Are Systematically Excluded: Estimating Completed Suicide After Bariatric Surgery. https://arxiv.org/abs/2305.01277

further issues: one-inflation

further issues: one-inflation

Figure: The Guardian 30 Dec 2016: "Thousands of drink-drivers offend again"

drink-driving in Britain

- drink-driving (DD) relates to driving (or attempting to drive) while being above the legal alcohol limit
- according to the Guardian (30/12/16): 219,000 motorist were caught once, 8,068 twice, etc. (see Table below)

Table: Frequency distribution of the count (per person) of DVLA reported drink-driving (DD) in the UK between 2011 and 2015 (figures are based on DR10 endorsements)

Figure: One-inflation distorts the Poisson fit

Figure: One-inflation distorts the Poisson fit

a synthetic example

- 500 counts sampled from Po(1)
- 500 extra-counts of 1 so that N = 1,000
- $\hat{\lambda} = 0.4091$ and

$$\mathsf{HTE} = \frac{n}{1 - \exp(-\hat{\lambda})} = \frac{824}{1 - \exp(-0.4091)} = 2454$$

Table: one-inflated Poisson data

lambda

- one-inflation leads to $\hat{\lambda} << \lambda$
- Horvitz-Thompson estimator $n \frac{1}{1-\exp(-\hat{\lambda})} >> N$
- as $g(\lambda) = \frac{1}{1 \exp(-\lambda)}$ strictly decreasing

two processes

- do not know the size: *zero truncation*
- many counts of ones (singletons): one inflation

this can be modelled as

$$(1-w)I_1(x) + \frac{w}{1-p(0;\theta)}p(x;\theta)$$

The Annals of Applied Statistics 2019, Vol. 13, No. 2, 1198–1211 https://doi.org/10.1214/18-AOAS1232 © Institute of Mathematical Statistics, 2019

THE IDENTITY OF THE ZERO-TRUNCATED, ONE-INFLATED LIKELIHOOD AND THE ZERO-ONE-TRUNCATED LIKELIHOOD FOR GENERAL COUNT DENSITIES WITH AN APPLICATION TO DRINK-DRIVING IN BRITAIN

BY DANKMAR BÖHNING AND PETER G. M. VAN DER HEIJDEN

University of Southampton and University of Utrecht

GOF in the case study

Table: Frequency distribution for observed and fitted count of completed suicide under zero-truncated Poisson with offset for person-times; $\chi^2_{(2)} = 1.59$ and p - value = 0.45

count of completed suicide	0	1	2	3	4+
observed frequency f_{x}	-	18	3	3	3
fitted frequency \hat{f}_{x}	-	18.3	4.5	1.7	2.5

how to present fitted frequency for complex model

suppose a model (here for a Poisson with log-link) the has been fitted leading to

 $\hat{\mu}_i = \exp(\hat{\beta}^T \mathbf{z_i})$

for unit *i* in the sample, then:

$$\hat{f}_x = \sum_{i=1}^n \exp(-\hat{\mu}_i)\hat{\mu}_i^x/x!$$

Statistical Methods in Medical Research Volume 25, Issue 2, April 2016, Pages 902-916 © The Author(s) 2013, Article Reuse Guidelines https://doi.org/10.1177/0962280212473386

Article

The covariate-adjusted frequency plot

Heinz Holling¹, Walailuck Böhning¹, Dankmar Böhning², and Anton K Formann^{3,†}

alternative: Bayes

- posterior \propto likelihood \times prior
- in our case

$$\pi(\lambda|x_1,\cdots,x_n) \propto \underbrace{\prod_{i} \frac{\exp(-\lambda P_i)}{1-\exp(-\lambda P_i)} (\lambda P_i)^{x_i}}_{ZT-Poisson-likelihood} \times \underbrace{\pi(\lambda)}_{prior}$$

or

$$\pi(\lambda|x_1,\cdots,x_n) = \frac{\prod_i \frac{(\lambda P_i)^{x_i}}{\exp(-\lambda P_i)-1} \times \pi(\lambda)}{\int_{\lambda} \prod_i \frac{(\lambda P_i)^{x_i}}{\exp(-\lambda P_i)-1} \times \pi(\lambda) \ d\lambda}$$

priors

- non-informative $\pi(\lambda) = 1$
- 95% CI: 23.14 43.20 per 100,000 person years
- posterior median 31.75 per 100,000 person years
- more interesting are the population sizes
- 95% CI: 103 178 with posterior median of 134 studies

priors

- non-informative but proper log $\lambda \sim N(0, 1000^2)$
- 95% CI: 23.47 43.17 per 100,000 person years
- posterior median 31.66 per 100,000 person years
- more interesting the population sizes
- 95% CI: 103 175 with posterior median of 134 studies

•

- for comparison with $\pi(\lambda) = 1$:
- 95% CI: 103 178 with posterior median of 134 studies

priors

- Jeffreys invariance prior $\pi(\lambda) \propto \sqrt{\text{Fisher information}} = \sqrt{(\sum_i P_i)/\lambda}$
- 95% CI: 104-181 with posterior median of 133 studies
- for comparison with $\pi(\lambda) = 1$:
- 95% CI: 103 178 with posterior median of 134 studies

Figure: *left*: Jeffreys invariance prior *right*: non-informative improper prior

overview

Table: all methods for estimating the total size of studies in a nutshell

method	median	95% CI
MLE with bootstrap	133	93 - 167
Bayes prior:		
improper non-informative	134	103 - 178
log-normal	134	103 - 175
Jeffreys	133	104 - 181

Table: a final point: model (likelihood) assessment is essential

Distribution	LP	BIC	pop size
	5	58.6	125
	4	55.9	119
Poisson	3	52.6	118
	2	53.4	134
	1	50.7	134
	0	139.9	31

Table: recall: linear predictors considered

Linear predictor	Proportion of women	Country of origin	Interaction	log-person-time as offset
0	No	No	No	No
1	No	No	No	Yes
2	Yes	No	No	Yes
3	No	Yes	No	Yes
4	Yes	Yes	No	Yes
5	Yes	Yes	Yes	Yes

