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Case-study: Obesity Treatment
Risk of completed suicide after bariatric surgery: a systematic
review

• bariatric surgery is one of the most effective treatments for morbid
obesity, indicating a significant long-term weight loss

• while overall mortality decreases in patients who received bariatric
surgery, risk of suicide is still an issue

• Peterhänsel et al. (2013) undertake a meta-analysis on completed
suicide after bariatric surgery

• 27 studies are included in the analysis
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Case-study: Obesity Treatment
Risk of completed suicide after bariatric surgery: a systematic
review

• selection bias issue: only studies with completed suicide are included

• Peterhänsel et al. (2013):

The most crucial point in the analysis was the proper
treatment of the selection bias because of the method of
finding papers.

• hence, suicide rate will be overestimated (potentially substantially)
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conventional meta-analysis

• in a nutshell, the conventional approach for a meta-analytic analysis
(Cooper and Hedges 1994, Egger et al. 1995, Stangl and Berry 2000,
Borenstein et al. 2009:311) proceed as follows:

• let Xi denote the observed count of suicides in study i and
E (Xi ) = µi its corresponding expected value

• also, let Pi denote the person-years in study i

• Then, in meta-analysis a summary measure as a weighted average of
the study-specific rates on log-scale is used:

n∑
i=1

wi log(Xi/Pi )/
n∑

i=1

wi

where wi is a proxy estimate of the inverse variance, here wi = Yi

leading to
n∑

i=1

Yi log(Xi/Pi )/
n∑

i=1

Yi
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conventional meta-analysis

• another approach (Barendregt et al. 2013) works on the rate scale

• an attractive choice for wi in

n∑
i=1

wi (Xi/Pi )/
n∑

i=1

wi

is
wi = Pi

• this is in the Mantel-Haenszel philosophy weighting with the
denominator (here the person-years) leading to

λ̂ =
n∑

i=1

Xi/

n∑
i=1

Pi

as a summary estimate of the overall rate λ
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conventional meta-analysis

• a benefit of the Mantel-Haenszel approach here is that the variance
of λ̂ is easy to calculate:

Var(λ̂) = Var(
n∑

i=1

Xi/

n∑
i=1

Pi )

=
n∑

i=1

λPi/(
n∑

i=1

Pi )
2

• which is estimated as

λ̂/

n∑
i=1

Pi

• using this technique we find an overall rate of 44.51 suicides per
100, 000 person years with a 95% CI of 33.60− 55.42
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problem with the conventional approach

• any of these conventional approaches cope with zero-event studies
missing

• hence we need to turn to other ideas

the idea of capture-recapture

• objective is to determine the size N of an elusive target population

• some mechanism (life trapping, register, surveillance system)
identifies a unit repeatingly

• there is a count X informing about the number of identifications of
each unit in the target population

13



sample

available: sample
X1,X2, ...,XN

leading to

Table: Frequency distribution of count X of repeated identifications

x 0 1 2 3 4 ... population size
fx f0 f1 f2 f3 f4 ... N
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problem

if Xi = 0 unit is not observed leading to a reduced observable sample

X1,X2, ...,Xn

where – w.l.g. – we assume that

Xn+1 = Xn+2 = ... = XN = 0

Table: Frequency distribution of count X of repeated identifications

x 0 1 2 3 4 ... observed size
fx - f1 f2 f3 f4 ... n

hence
f0 = N − n is unknown
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why does data set fit into the capture-recapture setting?

• target population: studies on bariatric surgery with or without
completed suicide

• identifying mechanism: online web-search including databases
PubMed (PM), Web of Knowledge (WK), PsychInfo (PI),
ScienceDirect (SD) and Google Scholar (GS)

• Xi number of completed suicides in study i : can be viewed as the
count of repeated identifications for study i
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modelling

• to cope with missing zeros we need to involve modelling

• px = P(X = x) for x = 0, 1, 2, · · · base model

• for example Poisson :

px = exp(−µ)µx/x! = exp(−λP)(λP)x/x!

λ suicide rate, P person-time, µ = λP

Table: Frequency distribution of count X of repeated identifications

x 0 1 2 3 4 ... m
fx - f1 f2 f3 f4 ... fm
px p0 p1 p2 p3 p4 ... pm
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modelling

• need to incorporate study-specific person-times

• pix = P(Xi = x |Pi ) probab. for x events in study with person-time Pi

• for example Poisson :

pix = exp(−λPi )(λPi )
x/x!

λ suicide rate, Pi person-time in study i , µ = λP

• complete data likelihood
n∏

i=1

m∏
x=0

pfix
ix

where fix is the frequency of studies with person-time Pi and event
count x

• in our case, for given Pi the frequency fix is zero except for one value
of x where it is one
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EM philosophy: E-step

fi0 is unknown and needs to be replaced by its expected value: E − step

there is a general solution for the E-step:

ei0 := E (fi0|fi1, · · · , fin;Pi ) = Nipi0

where Ni is the population size of studies with person-time Pi

it follows that
ei0 = Nipi0 = (ni + ei )pi0

where ni = fi1 + · · ·+ fin ( = 1 in our case)

it follows further that
ei0 = ni

pi0

1− pi0

which replaces fi0 in the complete, unobserved likelihood leading to the
complete, expected likelihood
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EM philosophy: E-step

note the relationship to the Horvitz − Thompson estimator:

N̂i = ni + ei0 = ni + ni
pi0

1− pi0
=

ni

1− pi0

and

N̂ =
n∑

i=1

N̂i =
n∑

i=1

ni

1− pi0

in the case study we have that ni = 1 for i = 1, · · · , n

the E-step provides as by − product the item we are most interested in:
the count of studies with no suicides, alternatively, the total number of
studies
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EM philosophy: M-step

we need to maximize the complete, expected data likelihood

n∏
i=1

m∏
x=1

pfix
ix pei0

i0

the solution will depend on the model used: in the Poisson case the

complete data log-likelihood is

n∑
i=1

m∑
x=1

fix [−µi + x log µi ]− ei0µi

with µi = λPi which is maximized for

λ̂ =

∑n
i=1

∑m
x=1 x fix∑n

i=1(
∑m

x=1 Pi fix + Piei0)
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EM philosophy

now, the EM algorithm toggles between E- and M-step until convergence

E-step←→ M-step

start rate MH: 0.0004451183

step: 1 rate: 0.000353999 size: 121.9951
step: 2 rate: 0.000329974 size: 129.6188
step: 3 rate: 0.000321995 size: 132.4051
step: 4 rate: 0.000319157 size: 133.4304
step: 5 rate: 0.000318122 size: 133.8086
...
step: 14 rate: 0.0003175201 size: 134.03
step: 15 rate: 0.0003175201 size: 134.03
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EM philosophy: full set of covariates

here an illustration in the Poisson case

pix = P(Xi = x |β; zi) = exp(−µi )µ
x
i /x!

and

log µi = βTzi

if there are only person-times

log µi = log λ + log Pi
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EM philosophy

complete data likelihood – with covariates

n∏
i=1

m∏
x=0

pfix
ix

where

• pix = P(Xi = x |β; zi)

• zi represents the i-th covariate combination for i = 1, · · · , n
• fix is the frequency of observed counts equal to x for the i-th

covariate combination

• fi0 remains unknown
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E-step

we have
ei0 = ni

pi0

1− pi0

with pi0 = P(Xi = 0|β; zi)

M-step

to maximize
n∏

i=1

m∏
x=1

pfix
ix pei0

i0

this is model dependent; in the Poisson case with log-link

pix = P(Xi = x |β; zi) = exp(−µi )µ
x
i /x!,

with log µi = βTzi
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M-step for the Poisson case with only person-times

pij = P(Xi = j |β; zi) = exp(−µi )µ
j
i/j!

and
µi = exp(η + log Pi︸ ︷︷ ︸

log-person-times become offset

)

so, here simply
µi = exp(βTzi) = exp(η + log Pi )

where η is the log-rate
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alternatives to the EM philosophy

• use the observed, zero-truncated likelihood directly:

n∏
i=1

m∏
x=1

( pix

1− pi0

)fix

where pix = P(Xi = x |β; zi) as before

• depends on the chosen model (Poisson, geometric, binomial,
negative-binomial,...)

• use favorite algorithm such as NR, FS, or GN

• retrieve effect estimate β̂
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population size estimation with Horvitz-Thompson

Horvitz − Thompson estimator

N̂ =
N∑

i=1

Ii/wi

where

• Ii is an indicator if the i-th study of the population of target studies
is observed

• wi = P(Ii = 1) = 1− P(Ii = 0) = 1− pi0 = 1− P(Xi = 0|β̂; zi)

• under Poisson: wi = 1− exp(−µi ) and µ̂i = exp(β̂Tzi)

so that

N̂ =
n∑

i=1

1/[1− exp(β̂Tzi)]
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study population size estimation

so, in case we have use only person-times as offset

N̂ =
n∑

i=1

1/[1− exp(− exp(η̂ + log PTi ))]

for the data

N̂ =
n∑

i=1

1/[1− exp(exp(η̂ + log PTi )] = 134

total studies with and without completed suicide after bariatric surggery
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practical modelling

Table: Linear predictors considered

Linear Proportion Country Interaction log-person-time
predictor of women of origin as offset

0 No No No No
1 No No No Yes
2 Yes No No Yes
3 No Yes No Yes
4 Yes Yes No Yes
5 Yes Yes Yes Yes
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Table: Values of the maximised log-likelihood, number of parameters, and BIC
statistic s for models under consideration.

Distribution LP Maximised Number of BIC
log-likelihood parameters

5 -22.7 4 58.6
4 -23.0 3 55.9

Poisson 3 -23.0 2 52.6
2 -23.4 2 53.4
1 -23.7 1 50.7
0 -68.7 1 139.9

5 -22.7 5 61.9
4 -23.0 4 59.2

Negative- 3 -23.0 3 55.9
binomial 2 -23.4 3 56.7

1 -23.7 2 54.0
0 -38.7 2 84.0
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uncertainty assessment with the bootstrap

• in principle, we have a population of size N

• for each element i we have an indicator Ii telling us if element i has
been sampled or not

Ii =

{
1, if sampled

0, otherwise

where i = 1, ...,N

• the classical nonparametric bootstrap would then consider random
samples with replacement from I1, ..., IN

• problem is that we have only observed n out of N

• using the observed sample I1, ..., In for the bootstrap would
underestimate the variability of N̂

• the idea is to impute N using N̂
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uncertainty assessment with the bootstrap

Horvitz − Thompson estimator

N̂ =
N∑

i=1

Ii/ŵi

where

• ŵi = P̂(Ii = 1) = 1− P̂(Ii = 0)

• under Poisson: ŵi = 1− exp(−µ̂i ) and µ̂i = exp(β̂Tzi)

• or N̂ =
∑n

i=1 1/[1− exp(− exp(β̂Tzi)]

• this gives our imputed sample I1, ...In, ...IN̂

• note that In+1, ...IN̂ are all zero (N̂ needs to be rounded)
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uncertainty assessment with the bootstrap

finally

• we can consider bootstrap samples I ∗1 , ...I ∗
N̂

• note that there is now variability in the observed sample size n

• as all elements in the bootstrap sample with zero counts are
truncated, it does not matter that we have no covariate information
on the truncated counts

• using the zero-truncated bootstrap sample we estimate N̂∗

• this process is repeated B times (B = 25, 000 for example)
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distribution of total studies

Nhat
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• median = 133 studies on bariatic surgery with or without completed
suicide

• 95% percentile confidence interval : 93− 167 (red vertical bars)
37



uncertainty assessment with the bootstrap

• in a similar way a 95% percentile confidence interval for the suicide
rate is computed

• 24.84− 49.39 per 100, 000 person years

• with median rate of 31.86 per 100, 000 person years

• for comparison: the unadjusted rate is 44.51 per 100, 000 person
years
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further issues: one-inflation
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further issues: one-inflation

Figure: The Guardian 30 Dec 2016: ”Thousands of drink-drivers offend again”
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drink-driving in Britain

• drink-driving (DD) relates to driving (or attempting to drive) while
being above the legal alcohol limit

• according to the Guardian (30/12/16): 219,000 motorist were
caught once, 8,068 twice, etc. (see Table below)

Table: Frequency distribution of the count (per person) of DVLA reported
drink-driving (DD) in the UK between 2011 and 2015 (figures are based on
DR10 endorsements)

count of DD f0 f1 f2 f3 f4 f5 f6 n
frequency 219,008 8,068 449 46 5 2 227,578
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Figure: One-inflation distorts the Poisson fit
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Figure: One-inflation distorts the Poisson fit
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a synthetic example

• 500 counts sampled from Po(1)

• 500 extra-counts of 1 so that N = 1, 000

• λ̂ = 0.4091 and

HTE =
n

1− exp(−λ̂)
=

824

1− exp(−0.4091)
= 2454

Table: one-inflated Poisson data

f0 f1 f2 f3 f4+ n
176 690 95 32 7 824
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• one-inflation leads to λ̂ << λ

• Horvitz-Thompson estimator n 1
1−exp(−λ̂)

>> N

• as g(λ) = 1
1−exp(−λ) strictly decreasing
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two processes

• do not know the size: zero − truncation

• many counts of ones (singletons): one − inflation

this can be modelled as

(1− w)I1(x) +
w

1− p(0; θ)
p(x ; θ)
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GOF in the case study

Table: Frequency distribution for observed and fitted count of completed suicide
under zero-truncated Poisson with offset for person-times; χ2

(2) = 1.59 and
p − value = 0.45

count of completed suicide 0 1 2 3 4+

observed frequency fx - 18 3 3 3

fitted frequency f̂x - 18.3 4.5 1.7 2.5

1.0 1.5 2.0 2.5 3.0 3.5 4.0
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blue line: fitted
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how to present fitted frequency for complex model

suppose a model (here for a Poisson with log-link) the has been fitted
leading to

µ̂i = exp(β̂Tzi)

for unit i in the sample, then:

f̂x =
n∑

i=1

exp(−µ̂i )µ̂
x
i /x!
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alternative: Bayes

• posterior ∝ likelihood × prior

• in our case

π(λ|x1, · · · , xn) ∝
∏
i

exp(−λPi )

1− exp(−λPi )
(λPi )

xi

︸ ︷︷ ︸
ZT−Poisson−likelihood

×π(λ)︸︷︷︸
prior

• or

π(λ|x1, · · · , xn) =

∏
i

(λPi )
xi

exp(−λPi )−1 × π(λ)∫
λ

∏
i

(λPi )
xi

exp(−λPi )−1 × π(λ) dλ
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priors
• non-informative π(λ) = 1

• 95% CI: 23.14− 43.20 per 100, 000 person years

• posterior median 31.75 per 100, 000 person years

• more interesting are the population sizes

• 95% CI: 103− 178 with posterior median of 134 studies
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priors

• non-informative but proper log λ ∼ N(0, 10002)

• 95% CI: 23.47− 43.17 per 100, 000 person years

• posterior median 31.66 per 100, 000 person years

• more interesting the population sizes

• 95% CI: 103− 175 with posterior median of 134 studies

•
• for comparison with π(λ) = 1:

• 95% CI: 103− 178 with posterior median of 134 studies
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priors

• Jeffreys invariance prior π(λ) ∝
√

Fisher information =
√

(
∑

i Pi )/λ

• 95% CI: 104− 181 with posterior median of 133 studies

• for comparison with π(λ) = 1:

• 95% CI: 103− 178 with posterior median of 134 studies
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Figure: left: Jeffreys invariance prior right: non-informative improper prior
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overview

Table: all methods for estimating the total size of studies in a nutshell

method median 95% CI

MLE with bootstrap 133 93− 167

Bayes prior:
improper non-informative 134 103− 178
log-normal 134 103− 175
Jeffreys 133 104− 181
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Table: a final point: model (likelihood) assessment is essential

Distribution LP BIC pop size

5 58.6 125
4 55.9 119

Poisson 3 52.6 118
2 53.4 134
1 50.7 134
0 139.9 31

Table: recall: linear predictors considered

Linear Proportion Country Interaction log-person-time
predictor of women of origin as offset
0 No No No No
1 No No No Yes
2 Yes No No Yes
3 No Yes No Yes
4 Yes Yes No Yes
5 Yes Yes Yes Yes
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