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Random forests

Algorithm
5
Step 1
Draw bootstrap sample or subsample
Step 2
Grow tree
Step 3

At each node, randomly select features (mtry value)

Step 4

Repeat steps 1-3, average over all trees

Breiman 2001 Mach Learn 45:5
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Random forests
Tuning parameters

Number of trees
e Usual default: 500

® Use more trees for high dimensional datasets

mtry value

Number of features selected as splitting candidates in nodes
® Usual default: /p, where p = #features
* For large p use at least p/10

Terminal node size
Required number of observations in terminal nodes

® Determines tree size

* Typically small for classification, large for regression/survival
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Common Claims

Claim 1: “works well without tuning”

“RF is the algorithm with the smallest tunability.”

— Probst et al. 2019a

They compared ranger, glmnet, rpart, kknn, e1071: : svm,
xgboost.

Probst et al. 2019a J Mach Learn Res 20:1 e Probst et al. 2019b Wires Data Min Knowl 9:e1301
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Claim 1: “works well without tuning”
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Claim 1: “works well without tuning”
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X Exception: High dimensional data, low signal-to-noise ratio
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Claim 2: “no need to scale or recode predictors”
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Claim 2: “no need to scale or recode predictors”

Scaling

RF invariant to monotonic transformations
= scale-invariant

Example
Original 46 47 49 50 51 54
Scaled -12 -09 -02 02 05 16

Logarithm 153 155 159 1.61 1.63 1.69

Breiman et al. 1984 ISBN 9780412048418 e Hastie et al. 2009 ISBN 9780387848570, p. 352
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Claim 2: “no need to scale or recode predictors”

Categorical predictors
z={1,2,3,4}
Aim: Separate odd and even digits

Standard approach Naive approach
x={1,2,3,4} x={1,2,3,4}
T € {1,3@}/6\1‘@'5 {2,4}

{1,3}  {2,4}

Wright & Koénig 2019 PeerJ 7:¢6339
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Claim 2: “no need to scale or recode predictors”
Dummy coding A priori ordering
x=1{1,2,3,4} x=1{1,3,2,4}

r<3 r >3

{1,3} {2,4}

Order by average outcome

{3} {4}

Wright & Koénig 2019 PeerJ 7:¢6339
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Claim 2: “no need to scale or recode predictors”

Standard approach works well only for few categories

® 4 numbers = 2471 — 1 = 7 partitions
e 28 EU countries = 228=1 — 1 = 1.34 x 108 partitions

Wright & Koénig 2019 PeerJ 7:¢6339
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Claim 2: “no need to scale or recode predictors”
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v/ Works well without tuning 18

X Exception: High dimensional data, low signal-to-noise ratio
/ No need to scale or recode predictors
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Claim 3: “works well on high dimensional data”
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Claim 3: “works well on high dimensional data”

“[...] ability to deal with small sample sizes and
high-dimensional feature spaces.”

“the rate of convergence depends only on the number |S|
of strong variables, not on the dimension p."

— Biau & Scornet 2016

Biau & Scornet 2016 Test 25:197



Common Claims

Claim 3: “works well on high dimensional data”
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Claim 3: “works well on high dimensional data”

Intrinsic variable selection
® Greedy splitting algorithm selects best splitting variable

® No fitting of parameters or weights for other variables

Fast computation
See second part
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v/ Works well without tuning 22

X Exception: High dimensional data, low signal-to-noise ratio
/ No need to scale or recode predictors
\/ Works well on high dimensional data
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Claim 4: “cannot overfit”

“[...] overfitting is not a problem.”
“Random forests do not overfit as more trees are added.”

— Breiman 2001

Breiman 2001 Mach Learn 45:5
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Claim 4: “cannot overfit”
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Claim 4: “cannot overfit”

Definition 1
Adding trees does not hurt generalization error v

Definition 2
Training error is not smaller than generalization error X

Hastie et al. 2009 ISBN 9780387848570, p. 596 e Probst & Boulesteix 2018 J Mach Learn Res 18:1
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v/ Works well without tuning 26

X Exception: High dimensional data, low signal-to-noise ratio
/ No need to scale or recode predictors
\/ Works well on high dimensional data
\X Cannot overfit
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Claim 5: “works for any kind of data”
Extensions
e Random survival forests: Time-to-event outcomes

Conditional inference forests: Avoid split variable selection bias
Quantile regression forests: Quantile regression
Transformation forests: Predict distributions

Block forests: Multi-omics data

Random forests for bounded outcomes

Generalized random forests

And many more ...

Ishwaran et al. 2008 Ann Appl Stat 2:841 e Hothorn et al. 2006 J Comp Graph Stat 15:651 e Meinshausen 2006 J Mach
Learn Res 7:983 e Hothorn & Zeileis 2021 J Comp Graph Stat doi:10.1080/10618600.2021.1872581 e Hornung & Wright
2019 BMC Bioinformatics 20:358 e Weinhold et al. 2020 J Comp Graph Stat 29:639 e Athey et al. 2019 Ann Stat 47:1148
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Claim 5: “works for any kind of data”

“Methods like random forests regularly outperform neural
networks in arbitrary domains, especially when the underlying
data sizes are small and no domain-specific insight has
been used to arrange the architecture of the underlying
neural network.”

— Wang et al. 2018

Image, speech and natural language processing data

Top benchmark results are all deep learning, mostly CNN’s, RNN's
and (recently) transformers

Wang et al. 2018 ACM Trans Intell Syst Technol 9:69 e https://benchmarks.ai e http://yann.lecun.com/exdb/mnist/
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v/ Works well without tuning 29
X Exception: High dimensional data, low signal-to-noise ratio

/ No need to scale or recode predictors

\/ Works well on high dimensional data

\X Cannot overfit

\/ Works for almost any kind of data

X Exception: Image, speech and natural language processing
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Claim 6: “is an interpretable model”
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Claim 6: “is an interpretable model”

A single tree is interpretable




Common Claims

31

Claim 6: “is an interpretable model”

A random forest is not interpretable
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Claim 6: “is an interpretable model”

Several variable importance measures available

Gini/impurity importance: Sum of impurity measures

Permutation importance: Permute variable, difference of
prediction error

Bias-corrected impurity importance: Difference of impurity
importance to permuted version of variable

Conditional variable importance: Conditional on other
predictor variables

Maximal subtree: Depth of first split on variable

Breiman et al. 1984 ISBN 9780412048418 e Breiman 2001 Mach Learn 45:5 e Nembrini et al. 2018 Bioinformatics 34:3711
e Strobl et al. 2008 BMC Bioinformatics 9:307 e Ishwaran et al. 2010 J Am Stat Assoc 105:205
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v/ Works well without tuning 33
X Exception: High dimensional data, low signal-to-noise ratio

/ No need to scale or recode predictors

\/ Works well on high dimensional data

\X Cannot overfit

\/ Works for almost any kind of data
X Exception: Image, speech and natural language processing

X Is an interpretable model

Many variable importance measures available
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Claim 7: “the statistical properties are well understood”

Consistency
® Single tree not consistent
® RF consistent if a,,/n — 0 and a,, — © (a,/n: Subsampling
rate)
Convergence rate
® Single trees slower than minimax rate
® RF achieves minimax rate. If more than 54% of variables have
no effect, convergence rate faster than minimax
Asymptotic normality
® Single tree predictions asymptotically normally distributed
® RF predictions asymptotically normally distributed for
subsampling

Biau et al. 2008 J Mach Learn Res 9:2015-33 e Scornet 2016 J Multiv Anal 146:72-83 e Wager et al. 2014 J Mach Learn
Res 15:1625-51 @ Wager & Athey 2018 J Am Stat Assoc 113:1228
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Claim 7: “the statistical properties are well understood”

Assumptions

e Subsampling, not standard bootstrap
® Limit on subsampling rate, e.g. a,/n — 0 and a,, — ©

® Random splitting, e.g. purely random forest, selecting variable
and split completely randomly

Biau et al. 2008 J Mach Learn Res 9:2015-33 e Scornet 2016 J Multiv Anal 146:72-83
Wager et al. 2014 J Mach Learn Res 15:1625-51 e Wager & Athey 2018 J Am Stat Assoc 113:1228
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v/ Works well without tuning 36
X Exception: High dimensional data, low signal-to-noise ratio
/ No need to scale or recode predictors
\/ Works well on high dimensional data
\X Cannot overfit
\/ Works for almost any kind of data
X Exception: Image, speech and natural language processing
X Is an interpretable model
Many variable importance measures available
/ The statistical properties are well understood
X Assumptions do not hold with default/realistic settings
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Claim 8: “the split variable selection is biased”

More possible split points for variables with more categories
Example

® Sex: 2 unique values

Medication type: 5 unique values

Age (in years): m unique values

Biomarker: n unique values

Strobl et al. 2007 BMC Bioinformatics 8:25 e Wright et al. 2017 Stat Med 36:1272 e Nembrini et al. 2018 Bioinformatics
34:3711
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Claim 8: “the split variable selection is biased”

154

_m_.
_m_
-

Gini importance
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Number of categories

Strobl et al. 2007 BMC Bioinformatics 8:25 e Wright et al. 2017 Stat Med 36:1272 e Nembrini et al. 2018 Bioinformatics
34:3711
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Claim 8: “the split variable selection is biased”

i
-
-
-
-
_m_.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Minor category frequency

Boulesteix et al. 2012 Brief Bioinform 13:292 e Wright et al. 2017 Stat Med 36:1272 e Nembrini et al. 2018 Bioinformatics
34:3711
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Claim 8: “the split variable selection is biased”

Solution 1
Randomized splitting rule

Solution 2
Conditional inference forests or maximally selected rank statistics

Solution 3
Bias-corrected variable importance

Geurts et al. 2006 Mach Learn 63:3 e Hothorn et al. 2006 J Comp Graph Stat 15:651 e Wright et al. 2017 Stat Med
36:1272 e Nembrini et al. 2018 Bioinformatics 34:3711
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v/ Works well without tuning 41

X Exception: High dimensional data, low signal-to-noise ratio
/ No need to scale or recode predictors
\/ Works well on high dimensional data
\X Cannot overfit
\/ Works for almost any kind of data

X Exception: Image, speech and natural language processing
X Is an interpretable model

Many variable importance measures available

/ The statistical properties are well understood

X Assumptions do not hold with default/realistic settings

\/ The split variable selection is biased — solved
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Claim 9: “performance is not state of the art”

Gijsbers et al. 2019: Comparison of automated machine learning
algorithms on 39 datasets with 4h time budget

Results
Algorithm Average rank
H20AutoML 1.5
Auto-sklearn 2.1
AutoWeka 3.4
RF 3.0

Gijsbers et al. 2019 ICML arXiv:1907.00909
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Claim 9: “performance is not state of the art”
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Average runtime of random forest: 16.4 seconds
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v/ Works well without tuning 44

X Exception: High dimensional data, low signal-to-noise ratio
/ No need to scale or recode predictors
\/ Works well on high dimensional data
\X Cannot overfit
\/ Works for almost any kind of data

X Exception: Image, speech and natural language processing
X Is an interpretable model

Many variable importance measures available

/ The statistical properties are well understood

X Assumptions do not hold with default/realistic settings
\/ The split variable selection is biased — solved
\X Performance is not state of the art
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Claim 10: “detects interactions”

“Random forests are generally capable of capturing
gene-gene interactions, but current variable importance
measures are unable to detect them as interactions.”

“interactions are masked by marginal effects and
interactions cannot be differentiated from marginal effects.”

— Wright et al. 2016

“although it is able to take interactions into account, it
does not specifically detect them.”

— Schmalohr et al. 2018

Wright et al. 2016 BMC Bioinformatics 17:145 e Schmalohr et al. 2018 bioRxiv:353193



Common Claims

46
Claim 10: “detects interactions”
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Wright et al. 2016 BMC Bioinformatics 17:145
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Claim 10: “detects interactions”

Curse of dimensionality worse for interactions

Low probability to subsequently select all interacting variables in
high dimensional data.

Example with p = 100 000:

mtry = /p = 316: paway = 0.00001, p3pay = 3 x 1078

mtry = p/2 = 50000: poway = 0.25, paway = 0.125

Need marginal effect for first split
RF splitting only detects marginal effects

Wright et al. 2016 BMC Bioinformatics 17:145
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X Exception: High dimensional data, low signal-to-noise ratio
No need to scale or recode predictors
Works well on high dimensional data
Cannot overfit
Works for almost any kind of data

X Exception: Image, speech and natural language processing
Is an interpretable model

/ Many variable importance measures available
The statistical properties are well understood

X Assumptions do not hold with default/realistic settings
The split variable selection is biased — solved

Performance is not state of the art
Detects interactions
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Original RF

® randomForest
® randomForestSRC
® Rborist

® ranger

Not available anymore
* bigrf

® Random Jungle

Liaw & Wiener 2002 R News 2:18 e Ishwaran et al. 2008 Ann Appl Stat 2:841 e Seligman 2019
https://CRAN.R-project.org/package=Rborist ® Wright & Ziegler 2017 J Stat Softw 77:1



RF Implementations in R
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Extensions

party: Conditional inference forests

partykit: Conditional inference forests, model-based
recursive partitioning

quantregForest: Quantile regression forests
trtf: Transformation forests
blockForest: Block forests

grf: Generalized random forests

Hothorn et al. 2006 J Comp Graph Stat 15:651 e Hothorn & Zeileis 2015 J Mach Learn Res 16:3905 e Meinshausen 2006 J
Mach Learn Res 7:983 e Hothorn & Zeileis 2021 J Comp Graph Stat doi:10.1080/10618600.2021.1872581 e Hornung &
Wright 2019 BMC Bioinformatics 20:358 e Athey et al. 2019 Ann Stat 47:1148



Runtime and memory usage

Low dimensional data
® 100,000 samples, 100 variables
® 1000 trees, mtry=10

® 12 CPU cores (except randomForest)

Package Runtime (minutes) Memory usage (GB)
binary vars.  cont. vars.

randomForest 31.53 42.65 9.37

randomForest (MC) 5.34 7.20 13.20

randomForestSRC 1.72 5.96 7.26

Rborist 5.42 4.93 2.74

ranger 0.74 4.85 1.27

Slower machine than in original paper

Wright & Ziegler 2017 J Stat Softw 77:1
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Runtime and memory usage
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High dimensional data (genetic data)

® 10,000 samples, 150,000 variables (SNPs)
® 1000 trees, mtry=5000
® 12 CPU cores (except randomForest)

Package Runtime (hours)  Memory usage (GB)
randomForest 93.04 52.73
randomForest (MC) NA >96
randomForestSRC 1.33 36.05
Rborist NA >96
ranger 0.68 17.71
ranger (GWAS mode) 0.30 0.13
Slower machine than in original paper NA: Memory error

Wright & Ziegler 2017 J Stat Softw 77:1
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Pros
e Little or no tuning and data recoding required
® Good performance on almost any kind of data
e Qverfitting not a major problem

® Variable importance measures available

Cons

® Bad performance on images, speech and natural language
processing

® Not per se interpretable

e Will not win prediction challenges
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Fast implementations available

® Rborist fastest for continuous features and large sample sizes
® ranger fastest in all other cases

e Efficient analysis of genome-wide data with ranger

Caution
® Some packages differ in results

® Performance depends on type and size of data
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