Der Einfluß von Gallensäuren Auf das *C. jejuni*-Proteom und die Wirtszellinvasion

Campylobacter-Proteom-Analyse unter Galleexposition

PD Dr. Andreas Zautner Institut für Medizinische Mikrobiologie Universitätsmedizin Göttingen

Die Synthese der Gallensäuren

Primäre Gallensäuren (unkonjugiert) Cholsäure (CA; 36-38%)) Chenodesoxycholsäure (CDCA; 32-34%)

Primäre Gallensäuren (konjugiert) Taurocholsäure (TCA) Glykocholsäure (GCA) Taurochenodesoxycholsäure Glykochenodesoxychilsäure

Sekundäre Gallensäuren Desoxycholsäure (DCA, 26-28%) Lithocholsäure (LCA-, 1-2%)

Tertiäre Gallensäuren (Rekonjugation) Ursodesoxycholsäure (UDCA; <1%)

Der Enterohepatische Kreislauf

UNIVERSITÄTSMEDIZIN **UNIV** GÖTTINGEN **UMG**

Gallensäurenkreislauf in Vögeln

Zusammensetzung: Huhn und Pute: Chenodeoxycholyltaurine Cholyltaurine Allocholyltaurine

Enten und Gänse:

Chenodeoxycholyltaurine Phocaecholyltaurine

Cremers 2014 C_{GS} = 0.01 – 0.7% C_{GS}(Blut)<15µM

Hypothese

Die erhöhten Gallesäurekonzentrationen im menschlichen Intestinum stellen einen signifikanten Stressor für *Campylobacter jejuni* dar.

→Es sollte eine spezifische Stressantwort f
ür Gallens
äuren in der Bakterienzelle induziert werden.

Methode: Quantitative Proteomik

Toxische Wirkung der Gallensäuren auf *C. jejuni*

IC₅₀ der Gallensäuren für *C. jejuni* 81-176

Gallensäure	IC ₅₀ ± SD % (mM)	Half IC50 % (mM)
СА	0.15% ± 0.05 (3.48)	0.075% (1.74)
CDCA	0.10% ± 0.10 (2.41)	0.050% (1.21)
TCA	0.96% ± 0.23 (18.04)	0.485% (9.02)
GCA	0.74% ± 0.19 (15.18)	0.370% (7.59)
DCA	0.06% ± 0.04 (1.45)	0.030% (0.72)
LCA	1.00% ± 0.25 (26.56)	0.500% (13.28)
UDCA	0.970% ± 0.22 (24.71)	0.485% (12.35)

Der Einfluß von Gallensäuren auf die Zelladhärenz von *C. jejuni* 81-176

Legende: Cholsäure (CA) Desoxycholsäure (DCA) Lithocholsäure (LCA) Taurocholsäure (TCA) Chenodesoxycholsäure (CDCA) Ursodesoxycholsäure (UDCA) Glykocholsäure (GCA)

Primäre und sekundäre Gallensäuren erhöhen die Zelladhärenz von *C. jejuni*

Der Einfluß von Gallensäuren auf die Zellinvasion von *C. jejuni* 81-176

Vorhergehende Studien

Cia Proteins (Konkel et al. 1999, Rivera- Amill et al. 1999, River-Amill et al. 2001, Konkel et al. 2004; <u>Malik-Kale *et al.* 2008</u>)

CmeABC multidrug efflux pump (Lin et al. 2005)

CmeB, CmeF, CmeR und *Cj0561c* induziert durch DOC (Dzieciol *et al.* 2011, Mavri *et al* 2013)

Gallesalz und Erythromycin-Resistenz sind über gemeinsame Effluxmechanismen (RND efflux pumps, CmeABC und CmeDEF) assoziiert (Mavri *et al.* 2013)

Ein funktionelles Type VI Secretion system (T6SS) erhöht die Suszeptibilität gegenüber 0,2% DOC (Lertpiriyapong *et al.* 2012)

Negative Chemotaxis vermittelt durch TLP3 und 4 (Li et al. 2014)

CJIE1 prophage iTRAQ bei 0,1% DOC → 2% changed proteins: (Clark *et al.* 2014)

Zwei verschiedene massenspektrometrische Ansätze

Stable isotope labeling by amino acids in cell culture (SILAC)

UNIVERSITÄTSMEDIZIN GÖTTINGEN **UMG**

Label-free quantitative approach (SWATH-MS)

Statistische Analyse (R, Klaus Jung)

•log2 transformation and quantile normalization of protein peak areas (Bolstad *et al.*, 2003)

B0R8E4, Down-Up

- Pairwise comparison of values using linear models (Smyth *et al.*, 2004) and Benjamini-Hochberg adjustment
- Point scoring of individual protein profiles by log2 FC and FDR-adjusted confidence intervals (Jung *et al.*, 2009; Jung *et al.* 2011)

Postinfektiöse Komplikationen

- Stable isotope labeling by amino acids in cell culture (SILAC) technique (Ong *et al.*, 2002).
- Identification of suitable
 C. jejuni strain.
- Development of a chemically defined media for the analysis of amino acid nutrition requirements.

Campylobacter defined media: "Zutaten"

Solution 1	Solution 2	Amino acid mix	Individual
L-Aspartate	L-Arginine	L-Phenylalanine	components
L-Glutamate	hydrochloride	L-alanine	L-Cysteine
NaCl	Serine	L-histidine	nyarochionae
K₂SO₄	Solution 3	L-threonine	L-Cystine
	I -l eucine		Oxaloacetate
			NaHCO ₃
NH ₄ CI	L-ISOleucine	L-glycine	Biotin
EDTA	L-Valine	L-trypthophan	Thiomino
Solution 4	Solution 5		pyrophosphate
K ₂ HPO ₄	NAD		L-Proline
KH₂PO₄	Thiamine		L-Methionine
2 T	hydrochloride		CaCl ₂ . 1H ₂ O
	Calcium		Fe(NO ₃) ₃ . 9H ₂ O
	pantotnenate		pH to 6.8

UNIVERSITÄTSMEDIZIN **UMG**

Modified from Catlin B.W. 1973

Auxotypisierung

Auxotypisierung von 291 C. jejuni Isolaten

Amino acid requirement	No. of isolates
Prototrophic	285
Met-	17
Arginine-	1
Serine-	1

- Isolat av4258 ist sowohl Arginin als auch Serin auxotroph
- 17 Methionin-auxotrophe Isolate

Incorporation of HILAA in CDM broth

UNIVERSITÄTSMEDIZIN **UMG**

Incorporation of HIL - arginine in other *C. jejuni* prototroph strains in broth

Passage/ strain	4258	B17	81176	11168	4116	av518
P1	86.8	83.4	89.1	84.4	82.8	87.4
P2	95.2	96.2	97.8	95.6	96.4	95.8
P3	99	98.7	99.4	98.8	98.6	98.6
P4	99.7	99.5	99.7	99.5	99.2	98
P5	99.9	99.6	99.8	99.5	99.3	98.4
P6	99.5	99.7	99.4	99.6	99.3	98.7

Ergebnisse SILAC

→ SILAC weinig geeignete Methode aufgrund schlechter Lys-Einbaurate Verdau mit Arginase ArgC anstelle von Trypsin

→ Demonstration des Prinzips mit 0.03% (0,72 mM) DCA bei 37° C über 12 h

Ergebnisse SILAC II

Hoch Regulierte Proteine:

- transcription termination termination factor Rho (Rho)
- aspartate aminotransferase (aspC)
- GTP cyclohydrolase-2 (ribA)
- dCTP deaminase (dcd)
- methionine aminopeptidase (map)
- succinate dehydrogenase subunit C (sdhC)
- fibronectin-binding protein (cadF)
- 60 kDa chaperonin (groL)

Ergebnisse SILAC II

Unveränderte Proteine (Invasions-assoziiert)

- Campylobacter invasion antigen B (ciaB)
- flagellar motor switch protein FliG (FliG)
- paralyzed flagella protein PfIA (PfIA)
- co-chaperone protein (DnaJ)
- capsular polysaccharide ABC transporter
- periplasmic polysaccharide-binding protein (kpsD)

Ergebnisse SILAC III

Runterregulierte Proteine (beschrieben als DCA-induziert)

- CmeABC efflux pump proteins
- Catalase A (katA)
- Flagellar protein FlaA (FlaA)
- Flagellar protein FlaG (flaG)
- Flagellar hook protein FlgE

Data-Dependent Acquisition (DDA)

after Tate et al., J. Proteomics 2013.

Data-Independent Acquisition (DIA, aka SWATH) on High Resolution (QqToF/Q Exactive) mass spectrometers SWATH-MS (Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra)

UNIVERSITÄTSMEDIZIN UNIVERSITÄTSMEDIZIN UNIVERSITÄTSMEDIZIN

after Tate et al., J. Proteomics 2013.

Quantitative Proteomics of Intracellular *Campylobacter jejuni* Reveals Metabolic Reprogramming

Xiaoyun Liu, Beile Gao, Veronica Novik, Jorge E. Galán*

Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America

LC-MS/MS-Analysen

in vitro (Agar) vs 2h in Infektionsmedium

 \rightarrow Keine signifikanten Proteomveränderungen

2 h intrazellulär vs 20 h intrazellulär (COS-1-Zellen)

- \rightarrow 225 Proteine überwiegend herunterreguliert
- → Kein intrazellulärer Stress
- → Keine intrazelluläre Zellteilung
- → Reprogrammierung der Zelle:

Herunterregulation des Metabolismus Fumarat-Respiration

Liu et al. 2014

Protein identification by nanoLC/MS/MS

SWATH-MS

Anz. Proteine	1079	(SILAC 849) (Liu et al. 1428
(Max Quant/Protein Pilot 5.0)		
Quant.Proteine	957	(SILAC 500)
Anz. Peptide	14,644	
Proteome coverage	58.9%	(Liu et al. 86%)
Signifikant Verändert	700	(Liu et al. 225)
bekannt	459	
hypothetisch	241	

Principal component analysis (PCA).

UNIVERSITÄTSMEDIZIN GÖTTINGEN **UMG**

MarkerView

Venn-Diagramm aller getesteten Gallensäuren

Ergebnisse

Bile acid (mM)	No. of significantly upregulatated proteins ¹	No. of significantly downregulatated proteins ²	Total no. Signifcantly changed
CA (1.74)	19	28	47
CDCA (1.21)	89	80	169
TCA (9.02)	51	60	111
GCA (7.59)	139	20	159
DCA (0.72)	113	79	192
LCA (13.28)	4	13	17
UDCA (12.35)	2	4	6

¹significantly upregulatated proteins correspond to log2 Fold Change ≥1 ²significantly downregulatated proteins correspond to log2 Fold Change ≤1

Significantly distinct expressed proteins in cj81-176 on response to low concentration of each individual bile acid

Significantly distinct expressed proteins in cj81-176 on response to low concentration of each individual bile acid

Beschriebene Virulenz-assoziierte Faktoren die durch Gallensäuren hochreguliert werden

Protein ID	Gene Name	Protein function	Bile acid
A0A0H3PA52	htrA	serine protease	TCA
A1VZQ5	peb1C	Amino acid transport	TCA, GCA
A1W0U6	pseG	Flagella glycosylation	DCA, CDCA
Q5QKR7	pseC	Flagella glycosylation	DCA
Q939J8	psel	Flagella glycosylation	DCA, CDCA
A0A0H3PE81	ciaC	Flagella secreted protein	TCA, UDCA, GCA
A0A0H3P9C5	mapA	Lipoprotein	CA
A1W0G0	tatA	Protein secretion	TCA
A0A0H3PAY0	tatB	Protein secretion	GCA
A0A0H3PAN7	secF	Protein transport	DCA, GCA
A0A0H3PEE2	secG	Protein transport	LCA
A0A0H3P9B1	yajC	Protein transport	GCA
A0A0H3PAC3	cjj81176_1161	LOS sialylation	TCA, GCA
A0A0H3PCP5	cdtC	Toxin	GCA

Signifikant hochregulierte Proteins assoziiert mit Chemotaxis und Motilität

Protein ID	Gene name	Protein function	Bile acid
A0A0H3P9J9	aer1/cetB	Energy taxis	TCA, GCA
A0A0H3P9P7	aer2/cetC	Energy taxis	GCA
A0A0H3P9T7	tlp4	Sensing external stimuli	GCA
A0A0H3PAG7	cheW	Signal transducer	TCA, GCA
A0A0H3PAM0	cheA	Transferase	GCA
A0A0H3PAN9	tlp9/cetA	Signal transducer	CA, TCA, GCA
A0A0H3PB06	tlp5	Sensing internal stimuli	DCA, CDCA, GCA
A0A0H3PB49	tlp10	Sensing external stimuli	LCA, UDCA
A0A0H3PBN1	cheY	Chemotaxis protein CheY	DCA, CDCA
A0A0H3PEF7	tlp 1	Sensing external stimuli	CA, LCA, TCA, GCA
A0A0H3PEL1	tlp2	Sensing external stimuli	CA, TCA, GCA
A0A0H3PAE1	cheR	Methyltransferase	DCA, CDCA
A0A0H3P9L2	fliM	C-ring protein	GCA
A0A0H3PA78	fliY	Controls flagellar motor direction	DCA, GCA
A0A0H3PAL4	fliG	C-ring protein	CA, DCA
A0A0H3PIF6	fliL	Increases torque movement	CA, TCA, GCA

Allg. Stressantwort: DNA-Reparatur, Chaperone, reactive oxygen stress (ROS) defence proteins

Protein ID	Gene name	Protein function	Bile acid
A0A0H3P9V7	cjj81176_1101	DNA repair	DCA, GCA
A0A0H3PAG5	radA	DNA repair	TCA, GCA
A0A0H3PJI4	recN	DNA repair	GCA
A0A0H3PB76	dnaJ-1	Protein folding	CA, TCA
A0A0H3PEB4	nth	Protein folding	GCA
A1VYN0	htpG	Protein folding	GCA
A1VYU6	ligA	Protein folding	GCA
A0A0H3PBJ5	dsbD	Protein folding	TCA
A0A0H3PBY8	ahpC	Regulation of oxidative stress	GCA
A1VXQ2	sodB	Regulation of oxidative stress	DCA, CDCA

Signifikant hochregulierte Metabolismusassoziierte Proteine I

Protein ID	Gene name	Function in protein synthesis	Bile acid
A0A0H3P9B1	yajC	Alanyl-tRNA aminoacylation	GCA
A1VXT6	infC	Aminoacyl-tRNA synthetase	GCA
	motS		CCA
AUAUHJESKI	111613	Aminoacyi-iRNA synthetase	GCA
A0A0H3PAI4	ileS	Aminoacyl-tRNA synthetase	DCA, CDCA
A0A0H3PB64	trpS	Aminoacyl-tRNA synthetase	DCA, TCA, CDCA, GCA
A0A0H3PBL2	def	Aminoacyl-tRNA synthetase	DCA, GCA
A0A0H3PBY2	cjj81176_0318	Aminoacyl-tRNA synthetase	DCA
A0A0H3PCJ0	cjj81176_0101	Aminoacyl-tRNA synthetase	GCA
A0A0H3PDU5	tvrS	Aminoacyl-tRNA synthetase	DCA. CDCA. GCA
A0A0H3PDX5	rnc	Aminoacyl-tRNA synthetase	CA, TCA, GCA

Signifikant hochregulierte Metabolismusassoziierte Proteine II

Protein ID	Gene name	Function in protein synthesis	Bile acid
A0A0H3PHD8	valS	Aminopeptidase	GCA
A0A0H3PHR2	pheT	ATP-binding	GCA
A0A0H3PID1	glyS	Endonuclease	GCA
A1VYL8	alaS	Hydrolase	DCA, GCA
A1VYQ2	proS	Isomerase	DCA, GCA
A1VYU1	rppH	Ligase	DCA, CDCA, GCA
A1VZ00	aspS	Ligase	DCA
A1VZ23	rpll	Ligase	DCA, GCA
A1VZN1	pheS	ATP-binding	GCA
A1W048	gatA	Small protein activating enzyme	DCA, CDCA
A1W0I1	gatB	Translation	DCA, CDCA
A1W165	truD	Translation	TCA, GCA
A1W1L3	rpsT	Translation	TCA
A1W1U6	rpsH	Translation	DCA
A1W1V3	rpIP	Translation	TCA
A1W1V4	rpsC	Translation	TCA, GCA
A1VYB8	gatC	Translation initiation factor	DCA

23 Proteine wurden in SILAC gegensätzlich in Vergleich zu SWATH-MS reguliert

T: Protein IDs	Protein name	N: Razor + unique peptides	N: Q-value
A1VYG6	50S ribosomal protein L28	6	0
A1VZV2	50S ribosomal protein L34	1	0
A0A0H3PD07	C4-dicarboxylate transport protein	1	0
A0A0H3P972	CCP20	1	0
A1VZQ6	Chemotaxis protein methyltransferase	2	0
A0A0H3PJJ8	Chorismate mutase/prephenate dehydratase	6	0
A0A0H3P9Y5	Cpp21	3	0
A0A0H3PA83	Cytochrome C	1	0.0037267
A0A0H3PHE9	Flagellin	3	0
A0A0H3PDZ8	Formate dehydrogenase, iron-sulfur subunit	3	0
A0A0H3P9F9	Mechanosensitive ion channel family protein	1	0.0025773
A0A0H3PAT6	Phosphatase, Ppx/GppA family	3	0
A0A0H3PGN8	Pseudouridine synthase	4	0
A0A0H3P9G2	Putative, Cell division protein FtsH	3	0
A0A0H3PJC4	Putative, Chemotaxis protein MotB	1	0
A0A0H3PAE0	RIoH	4	0
A0A0H3PD83	Signal peptidase I	7	0
A0A0H3PGQ9	Signal peptide peptidase SppA, 36K type	2	0
A0A0H3P9Y3	Signal recognition particle receptor FtsY	3	0
A0A0H3PJ87	TPR domain protein	4	0
A0A0H3PEZ9	Uncharacterized protein	3	0
A0A0H3PHD0	Uncharacterized protein	2	0
A0A0H3PI03	Uncharacterized protein	1	0

Fazit

Relevante Gallensäuren Chenodesoxycholsäure, Desoxycholsäure, Glykocholsäure

in vitro Experimente wie Invasion, Adhäsion usw. unter Zusatz von Gallensäuren

SILAC-MS ungeeignet für Campylobacter spec.

SWATH-MS (Label free, DIA) geeignet für Campylobacter spec.

MS-Studien Neue Techniken → hinterfragen der Ergebnisse "veralteter Studien" unter Anwendung "veralteter Techniken"

Die wichtigsten Galleinduzierten Stressreaktionen sind Proteinsynthese/Metabolismus, Chemotaxis/Motilität, ROS-Proteine, Chaperone, Sec/Tat-Transport

1/3 der signifikant veränderten Proteine sind unbekannt (Hypothetisch)

Ausblick

Konstruktion von k.o.-Mutanten:

N°	Name	Uniprot	Bile acids Up-regulated	Function
1	Inv (IT-6)	A0A0H3P9Z9	GCA	Invasion phenotype protein
2	SAS (S2)	A0A0H3PA18	GCA	Sodium:alanine symporter
3	HAD2 (1)	A0A0H3PI47	CA, TCA, UDOC	HAD-superfamily hydrolase, subfamily IA, variant 1 family protein
4	Lipo (L1)	A0A0H3PCP8	CA, TCA	Lipoprotein, putative
5	Maf (1)	A1VYL9	CA, DOC, TCA, CDOC, GCA	Maf-like protein CJJ81176_0535
6	tgt (5)	A1VZZ8	LCA	Queuine tRNA-ribosyltransferase
7	tyrA (8)	A0A0H3PAH1	CDOC, GCA	Prephenate dehydrogenase
8	YajQ (Y1)	A1VY95	DOC, CDOC	UPF0234 protein CJJ81176_0398/YajQ family cyclic di-GMP-binding protein
9	Hip82 (1)	A0A0H3PBG0	DOC, CDOC	Hypothetical protein CJJ81176_1382
10	Hip12 (1)	A0A0H3P9A5	DOC	Hypothetical protein CJJ81176_0112
11	RrF2 (1)	A0A0H3PDG2	CA, DOC, LCA, UDOC, GCA (all neg)	RrF2 family protein, putative

→ Drei Effektorproteine für das *C. jejuni/C. coli* Typ-VI-Sekretionssystem

From Liquid medium, with Gaspacks (opening the flask every time point)

Growth curve

Motility

OD600 = 0,025 Diameter (cm) after 48hs in 0,4% M.H agar plate

Motility (N=3)

UNIVERSITÄTSMEDIZIN GÖTTINGEN **UMG** Danksagung

Wycliffe O. Masanta (UMG) Christof Lenz (MPI) Lisa Neuenroth (MPI) Jan Schrader (MPI)

Uwe Groß (UMG) Raimond Lugert (UMG)

