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Random forests

1 1 0 1 0
loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

1 according to majority vote
Breiman 2001 Mach Learn 45:5
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Random forests
Algorithm

Step 1
Draw bootstrap sample or subsample

Step 2
Grow tree

Step 3
At each node, randomly select features (mtry value)

Step 4
Repeat steps 1-3, average over all trees

Breiman 2001 Mach Learn 45:5
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Random forests
Tuning parameters

Number of trees
‚ Usual default: 500
‚ Use more trees for high dimensional datasets

mtry value
Number of features selected as splitting candidates in nodes

‚ Usual default: ?
p, where p “ #features

‚ For large p use at least p{10

Terminal node size
Required number of observations in terminal nodes

‚ Determines tree size
‚ Typically small for classification, large for regression/survival
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Common Claims

“works well without tuning”

“no need to scale or recode predictors”

“works well on high dimensional data”

“cannot overfit”

“works for any kind of data”

“is an interpretable model”

“the statistical properties are well understood”
“the split variable selection is biased”

“performance is not state of the art”

“detects interactions”
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Common Claims

“RF is the algorithm with the smallest tunability.”

— Probst et al. 2019a

They compared ranger, glmnet, rpart, kknn, e1071::svm,
xgboost.

Claim 1: “works well without tuning”
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Common Claims

“RF is the algorithm with the smallest tunability.”

— Probst et al. 2019a

They compared ranger, glmnet, rpart, kknn, e1071::svm,
xgboost.

Claim 1: “works well without tuning”

Probst et al. 2019a J Mach Learn Res 20:1 ‚ Probst et al. 2019b Wires Data Min Knowl 9:e1301
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Common Claims
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Figure 3: Boxplots of the tunabilities of the hyperparameters of the different algorithms with
respect to optimal defaults. The y-axis is on a logarithmic scale. All values below
10�3 were set to 10�3 to be able to display them. Same definition of whiskers as
in Figure 2.
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Claim 1: “works well without tuning”

Probst et al. 2019a J Mach Learn Res 20:1
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Common Claims
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Common Claims

3 Works well without tuning
7 Exception: High dimensional data, low signal-to-noise ratio

3 No need to scale or recode predictors
3 Works well on high dimensional data
37 Cannot overfit
3 Works for almost any kind of data

7 Exception: Image, speech and natural language processing

7 Is an interpretable model

3 Many variable importance measures available

3 The statistical properties are well understood

7 Assumptions do not hold with default/realistic settings

3 The split variable selection is biased Ñ solved
37 Performance is not state of the art
37 Detects interactions
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Common Claims

Scaling
RF invariant to monotonic transformations
ñ scale-invariant

Example
Original 4.6 4.7 4.9 5.0 5.1 5.4
Scaled -1.2 -0.9 -0.2 0.2 0.5 1.6
Logarithm 1.53 1.55 1.59 1.61 1.63 1.69

Claim 2: “no need to scale or recode predictors”
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Common Claims

Scaling
RF invariant to monotonic transformations
ñ scale-invariant

Example
Original 4.6 4.7 4.9 5.0 5.1 5.4
Scaled -1.2 -0.9 -0.2 0.2 0.5 1.6
Logarithm 1.53 1.55 1.59 1.61 1.63 1.69

Claim 2: “no need to scale or recode predictors”

Breiman et al. 1984 ISBN 9780412048418 ‚ Hastie et al. 2009 ISBN 9780387848570, p. 352
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Common Claims

Categorical predictors
x “ t1, 2, 3, 4u

Aim: Separate odd and even digits

Standard approach
x “ t1, 2, 3, 4u

t1, 3u

x P t1, 3u

t2, 4u

x P t2, 4u

Naïve approach
x “ t1, 2, 3, 4u

t1u

x ď 1

t2u

x ą 1

x ď 2

t3u

x ď 3

t4u

x ą 3

x ą 2

Claim 2: “no need to scale or recode predictors”

Wright & König 2019 PeerJ 7:e6339
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Common Claims

Dummy coding
x “ t1, 2, 3, 4u

t1u

x “ 1

t2u

x “ 2

t3u

x “ 3

t4u

x ‰ 3

x ‰ 2

x ‰ 1

A priori ordering
x “ t1, 3, 2, 4u

t1, 3u

x ď 3

t2, 4u

x ą 3

Order by average outcome

Claim 2: “no need to scale or recode predictors”

Wright & König 2019 PeerJ 7:e6339
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Common Claims

Standard approach works well only for few categories
‚ 4 numbers ñ 24´1 ´ 1 “ 7 partitions
‚ 28 EU countries ñ 228´1 ´ 1 “ 1.34 ˆ 108 partitions

Claim 2: “no need to scale or recode predictors”

Wright & König 2019 PeerJ 7:e6339
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Wright & König 2019 PeerJ 7:e6339
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Common Claims

3 Works well without tuning
7 Exception: High dimensional data, low signal-to-noise ratio

3 No need to scale or recode predictors

3 Works well on high dimensional data
37 Cannot overfit
3 Works for almost any kind of data

7 Exception: Image, speech and natural language processing

7 Is an interpretable model

3 Many variable importance measures available

3 The statistical properties are well understood

7 Assumptions do not hold with default/realistic settings

3 The split variable selection is biased Ñ solved
37 Performance is not state of the art
37 Detects interactions
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Common Claims

“[...] ability to deal with small sample sizes and
high-dimensional feature spaces.”

“the rate of convergence depends only on the number |S|

of strong variables, not on the dimension p.”

— Biau & Scornet 2016

Claim 3: “works well on high dimensional data”
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of strong variables, not on the dimension p.”

— Biau & Scornet 2016

Claim 3: “works well on high dimensional data”

Biau & Scornet 2016 Test 25:197
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Common Claims

Intrinsic variable selection
‚ Greedy splitting algorithm selects best splitting variable
‚ No fitting of parameters or weights for other variables

Fast computation
See second part

Claim 3: “works well on high dimensional data”
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Common Claims
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Common Claims

“[...] overfitting is not a problem.”

“Random forests do not overfit as more trees are added.”

— Breiman 2001

Claim 4: “cannot overfit”
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Common Claims
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Common Claims

Definition 1
Adding trees does not hurt generalization error 3

Definition 2
Training error is not smaller than generalization error 7

Claim 4: “cannot overfit”

Hastie et al. 2009 ISBN 9780387848570, p. 596 ‚ Probst & Boulesteix 2018 J Mach Learn Res 18:1
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3 Works well on high dimensional data
37 Cannot overfit

3 Works for almost any kind of data

7 Exception: Image, speech and natural language processing

7 Is an interpretable model

3 Many variable importance measures available

3 The statistical properties are well understood

7 Assumptions do not hold with default/realistic settings
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Common Claims

Extensions
‚ Random survival forests: Time-to-event outcomes
‚ Conditional inference forests: Avoid split variable selection bias
‚ Quantile regression forests: Quantile regression
‚ Transformation forests: Predict distributions
‚ Block forests: Multi-omics data
‚ Random forests for bounded outcomes
‚ Generalized random forests

And many more ...

Claim 5: “works for any kind of data”
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‚ Conditional inference forests: Avoid split variable selection bias
‚ Quantile regression forests: Quantile regression
‚ Transformation forests: Predict distributions
‚ Block forests: Multi-omics data
‚ Random forests for bounded outcomes
‚ Generalized random forests

And many more ...

Claim 5: “works for any kind of data”

Ishwaran et al. 2008 Ann Appl Stat 2:841 ‚ Hothorn et al. 2006 J Comp Graph Stat 15:651 ‚ Meinshausen 2006 J Mach
Learn Res 7:983 ‚ Hothorn & Zeileis 2021 J Comp Graph Stat doi:10.1080/10618600.2021.1872581 ‚ Hornung & Wright
2019 BMC Bioinformatics 20:358 ‚ Weinhold et al. 2020 J Comp Graph Stat 29:639 ‚ Athey et al. 2019 Ann Stat 47:1148



28

Common Claims

“Methods like random forests regularly outperform neural
networks in arbitrary domains, especially when the underlying
data sizes are small and no domain-specific insight has
been used to arrange the architecture of the underlying
neural network.”

— Wang et al. 2018

Image, speech and natural language processing data
Top benchmark results are all deep learning, mostly CNN’s, RNN’s
and (recently) transformers

Claim 5: “works for any kind of data”

Wang et al. 2018 ACM Trans Intell Syst Technol 9:69 ‚ https://benchmarks.ai ‚ http://yann.lecun.com/exdb/mnist/
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Common Claims

A single tree is interpretable

Sex
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Claim 6: “is an interpretable model”
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Common Claims

A random forest is not interpretable

Claim 6: “is an interpretable model”
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Common Claims

Several variable importance measures available
‚ Gini/impurity importance: Sum of impurity measures
‚ Permutation importance: Permute variable, difference of

prediction error
‚ Bias-corrected impurity importance: Difference of impurity

importance to permuted version of variable
‚ Conditional variable importance: Conditional on other

predictor variables
‚ Maximal subtree: Depth of first split on variable

Claim 6: “is an interpretable model”

Breiman et al. 1984 ISBN 9780412048418 ‚ Breiman 2001 Mach Learn 45:5 ‚ Nembrini et al. 2018 Bioinformatics 34:3711
‚ Strobl et al. 2008 BMC Bioinformatics 9:307 ‚ Ishwaran et al. 2010 J Am Stat Assoc 105:205
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Common Claims

3 Works well without tuning
7 Exception: High dimensional data, low signal-to-noise ratio

3 No need to scale or recode predictors
3 Works well on high dimensional data
37 Cannot overfit
3 Works for almost any kind of data

7 Exception: Image, speech and natural language processing
7 Is an interpretable model

3 Many variable importance measures available

3 The statistical properties are well understood

7 Assumptions do not hold with default/realistic settings

3 The split variable selection is biased Ñ solved
37 Performance is not state of the art
37 Detects interactions
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Common Claims

Consistency
‚ Single tree not consistent
‚ RF consistent if an{n Ñ 0 and an Ñ 8 (an{n: Subsampling

rate)
Convergence rate

‚ Single trees slower than minimax rate
‚ RF achieves minimax rate. If more than 54% of variables have

no effect, convergence rate faster than minimax
Asymptotic normality

‚ Single tree predictions asymptotically normally distributed
‚ RF predictions asymptotically normally distributed for

subsampling

Claim 7: “the statistical properties are well understood”
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Convergence rate

‚ Single trees slower than minimax rate
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‚ Single tree predictions asymptotically normally distributed
‚ RF predictions asymptotically normally distributed for

subsampling

Claim 7: “the statistical properties are well understood”

Biau et al. 2008 J Mach Learn Res 9:2015-33 ‚ Scornet 2016 J Multiv Anal 146:72-83 ‚ Wager et al. 2014 J Mach Learn
Res 15:1625-51 ‚ Wager & Athey 2018 J Am Stat Assoc 113:1228
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Common Claims

Assumptions
‚ Subsampling, not standard bootstrap
‚ Limit on subsampling rate, e.g. an{n Ñ 0 and an Ñ 8

‚ Random splitting, e.g. purely random forest, selecting variable
and split completely randomly

Claim 7: “the statistical properties are well understood”

Biau et al. 2008 J Mach Learn Res 9:2015-33 ‚ Scornet 2016 J Multiv Anal 146:72-83
Wager et al. 2014 J Mach Learn Res 15:1625-51 ‚ Wager & Athey 2018 J Am Stat Assoc 113:1228
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Common Claims
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7 Exception: High dimensional data, low signal-to-noise ratio

3 No need to scale or recode predictors
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37 Cannot overfit
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7 Exception: Image, speech and natural language processing
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37 Performance is not state of the art
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Common Claims

More possible split points for variables with more categories
Example

‚ Sex: 2 unique values
‚ Medication type: 5 unique values
‚ Age (in years): m unique values
‚ Biomarker: n unique values

Claim 8: “the split variable selection is biased”



37

Common Claims

More possible split points for variables with more categories
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‚ Sex: 2 unique values
‚ Medication type: 5 unique values
‚ Age (in years): m unique values
‚ Biomarker: n unique values

Claim 8: “the split variable selection is biased”

Strobl et al. 2007 BMC Bioinformatics 8:25 ‚ Wright et al. 2017 Stat Med 36:1272 ‚ Nembrini et al. 2018 Bioinformatics
34:3711
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Boulesteix et al. 2012 Brief Bioinform 13:292 ‚ Wright et al. 2017 Stat Med 36:1272 ‚ Nembrini et al. 2018 Bioinformatics
34:3711
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Solution 1
Randomized splitting rule

Solution 2
Conditional inference forests or maximally selected rank statistics

Solution 3
Bias-corrected variable importance

Claim 8: “the split variable selection is biased”

Geurts et al. 2006 Mach Learn 63:3 ‚ Hothorn et al. 2006 J Comp Graph Stat 15:651 ‚ Wright et al. 2017 Stat Med
36:1272 ‚ Nembrini et al. 2018 Bioinformatics 34:3711
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Common Claims

3 Works well without tuning
7 Exception: High dimensional data, low signal-to-noise ratio

3 No need to scale or recode predictors
3 Works well on high dimensional data
37 Cannot overfit
3 Works for almost any kind of data

7 Exception: Image, speech and natural language processing
7 Is an interpretable model

3 Many variable importance measures available
3 The statistical properties are well understood

7 Assumptions do not hold with default/realistic settings
3 The split variable selection is biased Ñ solved

37 Performance is not state of the art
37 Detects interactions
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Common Claims

Gijsbers et al. 2019: Comparison of automated machine learning
algorithms on 39 datasets with 4h time budget

Results

Algorithm Average rank
H2OAutoML 1.5
Auto-sklearn 2.1
AutoWeka 3.4
RF 3.0

Claim 9: “performance is not state of the art”



42

Common Claims

Gijsbers et al. 2019: Comparison of automated machine learning
algorithms on 39 datasets with 4h time budget

Results

Algorithm Average rank
H2OAutoML 1.5
Auto-sklearn 2.1
AutoWeka 3.4
RF 3.0

Claim 9: “performance is not state of the art”

Gijsbers et al. 2019 ICML arXiv:1907.00909
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Claim 9: “performance is not state of the art”

Gijsbers et al. 2019 ICML arXiv:1907.00909
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3 Works well without tuning
7 Exception: High dimensional data, low signal-to-noise ratio

3 No need to scale or recode predictors
3 Works well on high dimensional data
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3 Works for almost any kind of data

7 Exception: Image, speech and natural language processing
7 Is an interpretable model

3 Many variable importance measures available
3 The statistical properties are well understood
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Common Claims

“Random forests are generally capable of capturing
gene-gene interactions, but current variable importance
measures are unable to detect them as interactions.”

“interactions are masked by marginal effects and
interactions cannot be differentiated from marginal effects.”

— Wright et al. 2016

“although it is able to take interactions into account, it
does not specifically detect them.”

— Schmalohr et al. 2018

Claim 10: “detects interactions”
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“Random forests are generally capable of capturing
gene-gene interactions, but current variable importance
measures are unable to detect them as interactions.”

“interactions are masked by marginal effects and
interactions cannot be differentiated from marginal effects.”

— Wright et al. 2016

“although it is able to take interactions into account, it
does not specifically detect them.”

— Schmalohr et al. 2018

Claim 10: “detects interactions”

Wright et al. 2016 BMC Bioinformatics 17:145 ‚ Schmalohr et al. 2018 bioRxiv:353193
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Common Claims

Wright et al. BMC Bioinformatics  (2016) 17:145 Page 2 of 10

a b

Fig. 1 Problematic splits for classification trees and random forests. In (a) no reasonable first split on the variables x1 or x2 can be made. However,
two subsequent splits on x1 and x2 split the data perfectly. In (b), again no reasonable first split is possible, even though the classes are linear
separable. Both the variables x1 or x2 have to be considered simultaneously and even with several subsequent splits on x1 and x2, no accurate
classification is possible

However, current methods seem to fail in high dimen-
sional data [14], and the effect of various different inter-
action models on importance measures has not been
investigated. To detect interactions, the standard variable
importance measures of random forests, Gini and permu-
tation importance, are by design not suitable. Therefore,
different methods specifically designed to detect effects
of pairs of variables in random forests were proposed
[15–17]. These methods measure a joint variable impor-
tance to rank variable pairs by their interaction effects.
The efficacy of these approaches has only been inves-
tigated in small simulations and without considering
marginal effects or different interaction scenarios.
In an extensive simulation study, we therefore investi-

gate whether random forests variable importance mea-
sures capture or detect interactions effects. In the first
part, the Gini and permutation variable importance mea-
sures are used to capture interaction effects between
single nucleotide polymorphisms (SNPs). Since these
methods cannot detect interaction effects, we consider
only the pairwise importancemeasures in the second part,
in which we focus on the detection of interacting SNPs.
In our simulation, we consider various interaction mod-
els, vary effect sizes, minor allele frequencies (MAF) and
the number of SNPs randomly selected as splitting can-
didates (mtry). Even though SNPs are used as predictive
variables, all results naturally generalize to other kinds of
categorical data.

Methods
Random forests
Detailed descriptions of random forests are available in
the original [18] and more recent literature [19, 20]. In
brief, random forests are ensembles of decision trees.
Depending on the outcome, trees can be classification or
regression trees (CARTs) [21], survival trees [22] or prob-
ability estimation trees (PETs) [23], among others. For

random forests, a number of trees are grown that differ
because of two components. First, each tree is based on a
prespecified number of bootstrap samples or subsamples
of individuals. Second, only a random subset of the vari-
ables is considered as splitting candidates at each split in
the trees. To classify a subject in the random forest, the
results of the single trees are aggregated in an appropri-
ate way, depending on the type of random forest. A great
advantage of random forests is that the bootstrapping
or subsampling for each tree yields subsets of observa-
tions, termed out-of-bag (OOB) observations, which are
not included in the tree growing process. These are used
to estimate the prediction performance or variable impor-
tance. There are two specifically important parameters to
random forests: The number mtry of randomly selected
splitting candidates is usually kept fixed for all splits. In
most implementations, the default value for mtry is √p,
where p is the number of variables in the dataset. How-
ever, for datasets with a large number of variables, a larger
value is required to capture more relevant variables [3].
Typically, mtry is tuned, e.g. by comparing the predic-
tion performance of several values using cross validation.
Another important parameter of random forests is the size
of single trees. This size is usually controlled by stopping
the tree growth if a minimal terminal node size is reached.
For regression and survival outcomes, the terminal node
size is usually tuned together with the mtry value, while
for classification the trees are grown to purity.

Gini importance
The standard splitting rule in random forests for classifi-
cation outcomes is to maximize the decrease of impurity
that is introduced by a split. For this, the impurity is typ-
ically measured by the Gini index [21]. Since a large Gini
index suggests a large decrease of impurity, a split with
large Gini index can be considered to be important for
classification. Thus, the Gini importance for a variable xi

Claim 10: “detects interactions”

Wright et al. 2016 BMC Bioinformatics 17:145
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Common Claims

Curse of dimensionality worse for interactions
Low probability to subsequently select all interacting variables in
high dimensional data.
Example with p “ 100 000:
mtry “

?
p “ 316: p2way “ 0.00001, p3way “ 3 ˆ 10´8

mtry “ p{2 “ 50 000: p2way “ 0.25, p3way “ 0.125

Need marginal effect for first split
RF splitting only detects marginal effects

Claim 10: “detects interactions”

Wright et al. 2016 BMC Bioinformatics 17:145
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Common Claims

3 Works well without tuning
7 Exception: High dimensional data, low signal-to-noise ratio

3 No need to scale or recode predictors
3 Works well on high dimensional data
37 Cannot overfit
3 Works for almost any kind of data

7 Exception: Image, speech and natural language processing
7 Is an interpretable model

3 Many variable importance measures available
3 The statistical properties are well understood

7 Assumptions do not hold with default/realistic settings
3 The split variable selection is biased Ñ solved
37 Performance is not state of the art
37 Detects interactions
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RF Implementations in R

Original RF
‚ randomForest
‚ randomForestSRC
‚ Rborist
‚ ranger

Not available anymore
‚ bigrf
‚ Random Jungle

Liaw & Wiener 2002 R News 2:18 ‚ Ishwaran et al. 2008 Ann Appl Stat 2:841 ‚ Seligman 2019
https://CRAN.R-project.org/package=Rborist ‚ Wright & Ziegler 2017 J Stat Softw 77:1
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RF Implementations in R

Extensions
‚ party: Conditional inference forests
‚ partykit: Conditional inference forests, model-based

recursive partitioning
‚ quantregForest: Quantile regression forests
‚ trtf: Transformation forests
‚ blockForest: Block forests
‚ grf: Generalized random forests

Hothorn et al. 2006 J Comp Graph Stat 15:651 ‚ Hothorn & Zeileis 2015 J Mach Learn Res 16:3905 ‚ Meinshausen 2006 J
Mach Learn Res 7:983 ‚ Hothorn & Zeileis 2021 J Comp Graph Stat doi:10.1080/10618600.2021.1872581 ‚ Hornung &
Wright 2019 BMC Bioinformatics 20:358 ‚ Athey et al. 2019 Ann Stat 47:1148
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Runtime and memory usage

Low dimensional data
‚ 100,000 samples, 100 variables
‚ 1000 trees, mtry=10
‚ 12 CPU cores (except randomForest)

Package Runtime (minutes) Memory usage (GB)
binary vars. cont. vars.

randomForest 31.53 42.65 9.37
randomForest (MC) 5.34 7.20 13.20
randomForestSRC 1.72 5.96 7.26
Rborist 5.42 4.93 2.74
ranger 0.74 4.85 1.27

Slower machine than in original paper

Wright & Ziegler 2017 J Stat Softw 77:1
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Runtime and memory usage

Low dimensional data
‚ 100,000 samples, 100 variables
‚ 1000 trees, mtry=10
‚ 12 CPU cores (except randomForest)

Package Runtime (minutes) Memory usage (GB)
binary vars. cont. vars.

randomForest 31.53 42.65 9.37
randomForest (MC) 5.34 7.20 13.20
randomForestSRC 1.721.72 5.965.96 7.26
Rborist 5.425.42 4.93 2.74
ranger 0.740.74 4.854.85 1.27

Slower machine than in original paper

1.72 5.96
5.42
0.74 4.85

Wright & Ziegler 2017 J Stat Softw 77:1
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Runtime and memory usage

High dimensional data (genetic data)
‚ 10,000 samples, 150,000 variables (SNPs)
‚ 1000 trees, mtry=5000
‚ 12 CPU cores (except randomForest)

Package Runtime (hours) Memory usage (GB)

randomForest 93.04 52.73
randomForest (MC) NA ą96
randomForestSRC 1.33 36.05
Rborist NA ą96
ranger 0.68 17.71
ranger (GWAS mode) 0.30 0.13

Slower machine than in original paper NA: Memory error

Wright & Ziegler 2017 J Stat Softw 77:1
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Discussion

Pros
‚ Little or no tuning and data recoding required
‚ Good performance on almost any kind of data
‚ Overfitting not a major problem
‚ Variable importance measures available

Cons
‚ Bad performance on images, speech and natural language

processing
‚ Not per se interpretable
‚ Will not win prediction challenges
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Discussion

Fast implementations available
‚ Rborist fastest for continuous features and large sample sizes
‚ ranger fastest in all other cases
‚ Efficient analysis of genome-wide data with ranger

Caution
‚ Some packages differ in results
‚ Performance depends on type and size of data

huge
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