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Introduction

Sequential learning for an agent :

I Taking decisions in real time and in an uncertain
environment...

I ...that influence the observations of the agent and its future
actions.

Simplest sequential learning setting : bandit setting.
In this talk: Study of several bandit scenarii in different
contexts.
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Bandit setting

Simple mathematical framework for modeling some sequential
decision making problems.

Play between many slot machines and maximise your earnings!
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Bandit setting : the cumulative
objective

Resource allocation in face of
uncertainty See [Thompson (1933)],

[Robbins (1952)], [Gittins (1979)], [Cappé et

al. (2013)], [Munos (2014)], etc.

I K arms mechanisms

I Limited sampling resources T

I At each time t, choose kt and
collect Xt generated by
mechanism kt

I Objective : maximize
LT =

∑T
t=1Xt
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Bandit setting : the cumulative
objective

Resource allocation in face of
uncertainty See [Thompson (1933)],

[Robbins (1952)], [Gittins (1979)], [Cappé et

al. (2013)], [Munos (2014)], etc.

I K arms mechanisms

I Limited sampling resources T

I At each time t, choose kt and
collect Xt generated by
mechanism kt

I Objective : maximize
LT =

∑T
t=1Xt

Applications : Historically,
medical trials. Now rather used
in recommender systems.
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Bandit setting : the cumulative
objective

Resource allocation in face of
uncertainty See [Thompson (1933)],

[Robbins (1952)], [Gittins (1979)], [Cappé et

al. (2013)], [Munos (2014)], etc.

I K arms mechanisms

I Limited sampling resources T

I At each time t, choose kt and
collect Xt generated by
mechanism kt

I Objective : maximize
LT =

∑T
t=1Xt

Problem : Need to learn the
characteristic of the
distribution while trying to
allocate the samples to the best
distribution!
Exploration/exploitation
dilemma.
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Bandit setting : the cumulative
objective

Resource allocation in face of
uncertainty See [Thompson (1933)],

[Robbins (1952)], [Gittins (1979)], [Cappé et

al. (2013)], [Munos (2014)], etc.

I K arms mechanisms

I Limited sampling resources T

I At each time t, choose kt and
collect Xt generated by
mechanism kt

I Objective : maximize
LT =

∑T
t=1Xt

Bandit vocabulary:
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Expected regret and notations: stochastic setting
Stohastic setting: arm mechanisms are K distributions (νk)k
that produce independent samples. Let us write

I µk for the mean of distribution k
I ∆k = maxi µi − µk gap of arm k
I k∗ ∈ arg maxi µi optimal arm
I Tk,t for the number of times distribution k has been

sampled at time t
I µ̂k,t = 1

Tk,t

∑
tXt1{kt = k} for the empirical mean of

distribution k at time t

Finite budget objective : Minimize the expected regret at
time n

ERT = T max
k≤K

µk − E
T∑
t=1

Xt.

Classical assumption : The νk are supported on [0, 1].
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Proposed strategies

Many strategies have been proposed as e.g.

I Thompson sampling [Thompson, 1933]

I Gittins index [Gittins, 1979]

I Optimism in face of uncertainty [Auer et al., 2002]
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Optimism in face of uncertainty

In doubt, take the option that could be the best.

Algorithm 1 : UCB strategy (Auer et al., 2002)

Initialisation : Sample each distribution once.
For t = 1...T

Set kt ∈ arg max[µ̂k,t + 2
√

log(T )
Tk,t

]

Sample Xt ∼ νkt
Actualise µ̂k,t and Tk,t

EndFor

Exploration and exploitation!
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Regret bounds for this algorithm

Theorem (Auer et al. , 2002)

The UCB strategy satisfies

ERT ≤ 16
∑
k

log(T )

∆k
,

for ∆k = maxi µi − µk and

ERT ≤ 32
√
TK log(T ),

Almost matching lower bounds - there exists an algorithm that
reaches

√
TK, see [Bubeck et al, 2010].
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Proof idea
High proba. event on the emp. means: Hoeffding + union
bound gives

P

(
ξ =

{
∀k, t : |µ̂k,t − µk| ≤ 2

√
log(T )

Tk,t

})
≥ 1− 1/T 2.

Bounds on the number of arm pulls on ξ: At the last time
t that a sub-optimal arm is pulled

µk + 4

√
log(T )

Tk,n − 1
= µk + 4

√
log(T )

Tk,t
≥ Bk,t ≥ Bk∗,t ≥ µk∗ ,

which implies Tk,n ≤ 1 + 16 log T
∆2

k
.

Bound on the regret: Thus

RT =
∑
k

∆kETk,n ≤
∑
k

∆k(1 + 16
log T

∆2
k

) + 1/T.
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Summary

Summary cumulative regret:

Regret RT prob. dep. prob. indep.∑
k

log T
∆k

√
TK
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Expected regret and notations: adversarial setting
Adversarial setting: arm mechanisms generate K arbitrary
sequence (Xk,t) in [0, 1].
Finite budget objective : Minimize the expected regret at
time n

R̄T = max
k≤K

∑
t≤n

Xk,t − E
[ T∑
t=1

Xt

]
.

Theorem (Auer et al. , 2002)

The EXP3 strategy satisfies

R̄T ≤ 50
√
TK log(K).

Heavy use of randomisation to trick the environment (in case it
is hostile).
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Sequential learning

Resource allocation in face
of uncertainty : See [Robbins (1952)],

[Gittins (1979)], [Whittle, 1988], [Cappé et

al. (2013)], [Munos (2014)], etc.

I Distributions (νk)k≤K

supported on [0, 1] and with
unknown means µk

I Limited sampling resources T

I At each time t, choose kt and
collect Xt ∼ νkt

I Aim : maximise a function of
the collected data (X1, . . . , XT )
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data as we want, how well can
we achieve our objective?
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Sequential learning

Resource allocation in face
of uncertainty : See [Robbins (1952)],

[Gittins (1979)], [Whittle, 1988], [Cappé et

al. (2013)], [Munos (2014)], etc.

I Distributions (νk)k≤K

supported on [0, 1] and with
unknown means µk

I Limited sampling resources T

I At each time t, choose kt and
collect Xt ∼ νkt

I Aim : maximise a function of
the collected data (X1, . . . , XT )

Info. theoretic question

Given that we can collect T
data as we want, how well can
we achieve our objective?

Answear

Characterize the best possible
algorithmic performance given
the sequential collection of T
data.
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Sequential learning

Resource allocation in face
of uncertainty : See [Robbins (1952)],

[Gittins (1979)], [Whittle, 1988], [Cappé et

al. (2013)], [Munos (2014)], etc.

I Distributions (νk)k≤K

supported on [0, 1] and with
unknown means µk

I Limited sampling resources T

I At each time t, choose kt and
collect Xt ∼ νkt

I Aim : maximise a function of
the collected data (X1, . . . , XT )

Best arm identif.: output k̂
and find k∗ = arg maxµk.
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Sequential learning

Resource allocation in face
of uncertainty : See [Robbins (1952)],

[Gittins (1979)], [Whittle, 1988], [Cappé et

al. (2013)], [Munos (2014)], etc.

I Distributions (νk)k≤K

supported on [0, 1] and with
unknown means µk

I Limited sampling resources T

I At each time t, choose kt and
collect Xt ∼ νkt

I Aim : maximise a function of
the collected data (X1, . . . , XT )

Best arm identif.: output k̂
and find k∗ = arg maxµk.

Question

Smallest possible P(k̂ 6= k∗)
achieved by an algorithm given
that we can collect T data?

Problem 1 Problem 2
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Sequential learning

Resource allocation in face
of uncertainty : See [Robbins (1952)],

[Gittins (1979)], [Whittle, 1988], [Cappé et

al. (2013)], [Munos (2014)], etc.

I Distributions (νk)k≤K

supported on [0, 1] and with
unknown means µk

I Limited sampling resources T

I At each time t, choose kt and
collect Xt ∼ νkt

I Aim : maximise a function of
the collected data (X1, . . . , XT )

Best arm identif.: output k̂
and find k∗ = arg maxµk.

Smallest error: will depend
on the distance between the
distribution’s means.

Model complexity :

H :=
∑
k 6=k∗

1

(µk∗ − µk)2
.
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Known H
[Audibert and Bubeck, 2010]’s strategy : based on an UCB

kt = arg max
k

[µ̂k,t+

√
aT

Tk,t
],

{
µ̂k,t empirical mean
Tk,t nb. of collected samples.

}
At time T , recommend

k̂ ∈ arg max
k

µ̂k,T .

Theorem (Audibert and Bubeck, 2010, Kaufmann et. al,
2015, C. and Locatelli, 2016)

If 1/a = H :=
∑
k 6=k∗

1

(µk∗ − µk)2
,

then P(k̂ 6= k∗) ≤ � exp(−�TH).

For any H, any strategy, there exists a problem such that

P(k̂ 6= k∗) ≥ � exp(−�TH).
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Unknown H
[Audibert and Bubeck, 2010]’s “agnostic” strategy : divide the
budget T in log(K) and run with log(K) well-chosen
parameters a. Then aggregate samples.

Theorem (Audibert and Bubeck, 2010)

For this “agnostic” strategy

P(k̂ 6= k∗) ≤ � exp(−� TH

log(K)
).

Theorem (C. and Locatelli, 2016)

For any strategy there exists a problem such that

P(k̂ 6= k∗) ≥ � exp(−� TH

log(K)
).



Cumulative regret Best arm identification Thresholding bandit problem

Summary

Summary cumulative regret:

Regret RT prob. dep. prob. indep.∑
k

log T
∆k

√
TK

Summary best arm identification:

Status of H P(k̂ 6= k∗) rT = µ∗ − µk̂

Known � exp(−�TH)
√
T/K

Unknown � exp(−�TH/ log(K))
√
K/T
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Outline
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Sequential learning

Resource optimisation in
face of uncertainty : See

[Thompson (1933)], [Robbins (1952)], [Gittins

(1979)], [Whittle (1988)], [Cappé et al. (2013)],

[Munos (2014)], etc.

I Distributions (νk)k≤K with
unknown means µk

I Limited sampling resources T

I At each time t, choose kt and
collect Xt ∼ νkt

I Objective to fulfil
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[Munos (2014)], etc.

I Distributions (νk)k≤K with
unknown means µk

I Limited sampling resources T

I At each time t, choose kt and
collect Xt ∼ νkt

I Objective to fulfil



Cumulative regret Best arm identification Thresholding bandit problem

Sequential learning

Resource optimisation in
face of uncertainty : See

[Thompson (1933)], [Robbins (1952)], [Gittins

(1979)], [Whittle (1988)], [Cappé et al. (2013)],
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[Munos (2014)], etc.

I Distributions (νk)k≤K with
unknown means µk

I Limited sampling resources T

I At each time t, choose kt and
collect Xt ∼ νkt

I Objective to fulfil



Cumulative regret Best arm identification Thresholding bandit problem

Sequential learning

Resource optimisation in
face of uncertainty : See

[Thompson (1933)], [Robbins (1952)], [Gittins

(1979)], [Whittle (1988)], [Cappé et al. (2013)],
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Resource optimisation in
face of uncertainty : See

[Thompson (1933)], [Robbins (1952)], [Gittins

(1979)], [Whittle (1988)], [Cappé et al. (2013)],

[Munos (2014)], etc.

I Distributions (νk)k≤K with
unknown means µk

I Limited sampling resources T

I At each time t, choose kt and
collect Xt ∼ νkt

I Objective to fulfil

This is the thresholding bandit
problem, i.e. given a threshold
τ , and writing µk for the mean
of distribution k, we aim at
predicting

Q = (sign(µk − τ))k .
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Problem setting: K arms, budget T , threshold τ = 0

I Each arm k ∈ [K] corresponds to a distribution N (µk, 1)
with mean µk ∈ [−1, 1] - and we set τ = 0.

I At each round t < T the learner pulls an arm kt ∈ [K] and
observes a sample Xt ∼ N (µkt , 1).

I Upon exhaustion of the budget the learner is required to
output a prediction Q̂ ∈ {−1, 1}K of Q = sign(µk).
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Regret

Two measures of regret:
I Probability of error:

eT := P(Q̂ 6= Q).

I Simple regret:
rT := E max

k:Q̂[k] 6=Q[k]
|µk|.
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Problem independent results

Theorem (Cheshire et. al, 2020)

It holds that (uniform sampling reaches this)

inf
algo

sup
problem

rT �
√
K log(K)

T
.

Upper bound trivial (uniform sampling), lower bound somewhat
more tricky than in batch setting.
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Unconstrained setting: problem dependent results
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Unconstrained setting: problem dependent results

In what follows: write the gaps

∆i = |µi|,

and M∆̄ the set of problems with gaps ∆̄.

Theorem (Locatelli et al., 2016)

For any vector of gaps ∆̄ it holds that

K log(T ) exp(−�T/H) & inf
algo

sup
problem in M∆̄

eT & exp(−�T/H),

where H =
∑

i ∆̄−2
i .
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Unconstrained setting: problem dependent results
In what follows: write the gaps

∆i = |µi|,

and M∆̄ the set of problems with gaps ∆̄.

Theorem (Locatelli et al., 2016)

For any vector of gaps ∆̄ it holds that

K log(T ) exp(−�T/H) & inf
algo

sup
problem in M∆̄

eT & exp(−�T/H),

where H =
∑

i ∆̄−2
i .

APT algorithm: sample at time t

kt ∈ arg min
k

Tk,t|µ̂k,t|2.
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Conclusion

Theorem ((Locatelli et al, 2016), (Cheshire et al, 2020))

It holds that

inf
algo

sup
problem

rT ≈
√
K logK

T
,

and for T & logK ∨ log log T and any ∆̄

inf
algo

sup
∆̄−problem

log eT � −T/H.
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Summary

Summary cumulative regret:

Regret RT prob. dep. prob. indep.∑
k

log T
∆k

√
TK

Summary thresholding bandit problem:

Regret RT prob. dep. prob. indep.

� exp(−�TH)
√
K logK/T
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Summary

Summary cumulative regret:

Regret RT prob. dep. prob. indep.∑
k

log T
∆k

√
TK

Summary best arm identification:

Status of H P(k̂ 6= k∗) rT = µ∗ − µk̂

Known � exp(−�TH)
√
T/K

Unknown � exp(−�TH/ log(K))
√
K/T

Summary thresholding bandit problem:

Regret RT prob. dep. prob. indep.

� exp(−�TH)
√
K logK/T
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Conclusion

In this talk:

I Three bandit problems: cumulative regret, best arm
identification, thresholding bandit problem.

I Strategies: optimism in the face of uncertainty

I Slight change of assumptions between thresholding bandit
and best arm identification: change in the optimal rate
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