Non-Proportional-Odds-Modelle sind weitgehend verzichtbar: Sparsame Modellierung über Location-Shift-Ansätze

Moritz Berger

Universität Bonn

In Zusammenarbeit mit Gerhard Tutz

Kolloquium "Statistische Methoden in der empirischen Forschung", Berlin 17. Januar 2023

Related Articles

- 1. Tutz, Gerhard & Berger, Moritz (2017): Separating location and dispersion in ordinal regression models, Econometrics and Statistics 2, 131-148.
- Tutz, Gerhard & Berger, Moritz (2022): Sparser ordinal regression models based on parametric and additive location-shift approaches, International Statistical Review 90(2), 306-327.

Cumulative Regression Models

General representation

$$P(Y \leq r | \mathbf{x}) = F(\eta_r(\mathbf{x})), \quad r = 1, \dots, k-1$$

- $Y \in \{1, \ldots, k\}$: ordinal response
- x: vector of covariates
- F(·): cumulative distribution function
- $\eta_r(\cdot)$: predictor function

Proportional odds model (McCullagh, 1980)

$$P(Y \le r | \mathbf{x}) = \frac{\exp(\eta_r)}{1 + \exp(\eta_r)} = \frac{\exp(\beta_{0r} + \mathbf{x}^\top \beta)}{1 + \exp(\beta_{0r} + \mathbf{x}^\top \beta)} \quad \text{or equivalent}$$
$$\log\left(\frac{P(Y \le r | \mathbf{x})}{P(Y > r | \mathbf{x})}\right) = \beta_{0r} + \mathbf{x}^\top \beta$$

- ▶ β_{0r} : category-specific intercepts
- \triangleright β : regression coefficients

Proportional Odds Model

Interpretation of parameters

Define $\gamma(r|\mathbf{x}) = P(\mathbf{Y} \le r|\mathbf{x})/P(\mathbf{Y} > r|\mathbf{x})$. Then the proportion of cumulative odds for two sets of covariates is given by

$$rac{\gamma(r|\mathbf{x})}{\gamma(r|\tilde{\mathbf{x}})} = \exp\left((\mathbf{x}-\tilde{\mathbf{x}})^{\top}\boldsymbol{\beta}
ight) \,,$$

which does not depend on the category r.

In particular, $\exp(\beta_j)$ represents the factor by which the cumulative odds change, if x_j increases by one unit

$$\exp(eta_j) = rac{\gamma(r|x_1,\ldots,x_j+1,\ldots,x_p)}{\gamma(r|x_1,\ldots,x_j,\ldots,x_p)},$$

which is the same for all odds.

Category-Specific Effects

Non-proportional odds model

$$\log\left(\frac{P(Y \le r | \mathbf{x})}{P(Y > r | \mathbf{x})}\right) = \beta_{0r} + \mathbf{x}^{\top} \boldsymbol{\beta}_{r}$$

This general model usually provides a better fit to the data, but postulates that

$$\beta_{01} + \mathbf{x}^{\top} \boldsymbol{\beta}_1 \leq \ldots \leq \beta_{0,k-1} + \mathbf{x}^{\top} \boldsymbol{\beta}_{k-1},$$

which is a strong restriction and may cause problems when estimating probabilities for future observations (Walker, 2016).

Partial proportional odds model

$$\log\left(\frac{P(Y \le r | \boldsymbol{w}, \boldsymbol{z})}{P(Y > r | \boldsymbol{w}, \boldsymbol{z})}\right) = \beta_{0r} + \boldsymbol{w}^{\top} \boldsymbol{\beta}^{w} + \boldsymbol{z}^{\top} \boldsymbol{\beta}_{r}^{z}$$

The effects of w are global, while the effects of z are category-specific. In sociology, partial proportional odds models are also referred to as generalised ordered logit models (Williams, 2006).

Location-Scale Model

A cumulative model that accounts for additional dispersion is given by

$$\log\left(\frac{P(Y \le r | \mathbf{x})}{P(Y > r | \mathbf{x})}\right) = \frac{\beta_{0r} + \mathbf{x}^\top \beta_r}{\tau_x}, \quad r = 1, \dots, k-1,$$

where τ_x is a variance parameter, which may depend on x.

 In social science the model is also known as heterogeneous choice model (Williams, 2010).

Shortcomings:

- model is highly non-linear
- model is not a member of the class of GLMs

Location-Shift Models

An alternative extension of the proportional odds model assumes that the thresholds β_{0r} may change with an (additional) set of covariates z. This yields the so-called location-shift model, which is given in closed form by

$$\log\left(\frac{P(Y \le r | \mathbf{x}, \mathbf{z})}{P(Y > r | \mathbf{x}, \mathbf{z})}\right) = \beta_{0r} + \mathbf{x}^{\top} \boldsymbol{\beta} + (r - k/2) \mathbf{z}^{\top} \boldsymbol{\alpha}, \quad r = 1, \dots, k - 1.$$

- ► $\mathbf{x}^{\top}\boldsymbol{\beta}$: location term
- ▶ $\mathbf{z}^{\top} \boldsymbol{\alpha}$: dispersion term
- ► (r − k/2) : scaling factor

Illustration for k = 6

$$(1) \begin{vmatrix} 2 \\ \beta_{01} - 2z^{T}\alpha & \beta_{02} - z^{T}\alpha & \beta_{03} & \beta_{04} + z^{T}\alpha & \beta_{05} + 2z^{T}\alpha \end{vmatrix} = (6)$$

▶ $\mathsf{z}^{ op} \alpha$ positive: intervals are widened \Rightarrow weaker dispersion

▶ $\mathbf{z}^{ op} \boldsymbol{lpha}$ negative: intervals are shrunk \Rightarrow stronger dispersion

Application - Eye Vision

	Vision Quality						
	Highest (1)	2	3	Lowest (4)			
Men	1053	782	893	514			
Women	1976	2256	2456	789			

Stuart's (1953) quality of right eye vision data:

Parameter estimates and standard errors:

Covariate	Proportional Odds Model			Location-Shift Model			
	estimate	std error	z value	estimate	std error	z value	
Intercept1	-0.905	0.034	-26.613	-0.721	0.037	-19.397	
Intercept2	0.293	0.033	8.911	0.236	0.033	7.104	
Intercept3	2.005	0.039	50.398	1.710	0.045	37.563	
gender (female) location	-0.038	0.038	-1.003	0.042	0.038	1.109	
dispersion				0.353	0.031	11.348	

▶ LR test $(H_0 : \alpha = 0)$: 122.5 on 1 df \Rightarrow dispersion effect present!

•
$$e^{\hat{\alpha}} = 2.01$$
 increases odd for categories ≤ 3

Comparison - Eye Vision

Location effects, dispersion effects and deviances for 100 sub-samples of size 200 of the eye vision data, when estimating

- the locoation-scale model (x-axis)
- the location-shift model (y-axis)

 \blacktriangleright relation between the parameters α and γ non-linear!

Hierarchy of Models

Let us consider the case when x = z. Then, one has

$$\log\left(\frac{P(Y \le r|\mathbf{x})}{P(Y > r|\mathbf{x})}\right) = \beta_{0r} + \mathbf{x}^{\top}(\boldsymbol{\beta} + (r - k/2)\boldsymbol{\alpha}) = \beta_{0r} + \mathbf{x}^{\top}\boldsymbol{\beta}_{r},$$

where $\beta_r = \beta + (r - k/2) \alpha$.

 \Rightarrow The location-shift model is equivalent to a category-specific model with constraints.

Because the proportional odds model is a submodel of the location-shift model, the following nested structure holds

proportional odds model \subset location-shift model \subset non proportional odds model

 \Rightarrow One can investigate if the models can be simplified by testing the sequence of nested models.

Location-Shift and Partial Proportional Odds

Let x be partitioned into two subvectors $x^{\top} = (w^{\top}, z^{\top})$, such that $x^{\top}\beta = w^{\top}\beta^{w} + z^{\top}\beta^{z}$. Then one obtains

$$\eta_r = \beta_{0r} + \mathbf{x}^T \boldsymbol{\beta} + (r - k/2) \mathbf{z}^T \boldsymbol{\alpha}$$

= $\beta_{0r} + \mathbf{w}^T \boldsymbol{\beta}^w + \mathbf{z}^T \boldsymbol{\beta}^z + (r - k/2) \mathbf{z}^T \boldsymbol{\alpha}$
= $\beta_{0r} + \mathbf{w}^T \boldsymbol{\beta}^w + \mathbf{z}^T \boldsymbol{\beta}^z_r$,

where $\beta_r^z = \beta^z + (r - k/2) \alpha$.

- \Rightarrow The location-shift model is a submodel of the partial proportional odds that allows for an easier interpretation of effects.
 - + The proposed model is between the most general model and a model with global effects, in which the impact of a single variable is described by just two parameters (instead of one or k 1).

Adjacent Categories Models

Location-shift version of the model

$$\log\left(\frac{P(\mathbf{Y}=r+1|\mathbf{x})}{P(\mathbf{Y}=r|\mathbf{x})}\right) = \beta_{0r} + \mathbf{x}^{T}\boldsymbol{\beta} + (k/2-r)\mathbf{z}^{T}\boldsymbol{\alpha}, \quad r = 1, \dots, k-1.$$

no ordering of intercepts has to be postulated!

Illustration for k = 6

- $\mathbf{z}^{\top} \boldsymbol{\alpha}$ positive: tendency to middle categories
- $\mathbf{z}^{\top} \boldsymbol{\alpha}$ negative: tendency to extreme categories

Estimation and Implementation

Estimation and evaluation by embedding the model into the framework of multivariate generalized linear models (GLMs)

- Data: (y_i, x_i, z_i), i = 1, ..., n
- ▶ Distributional assumption: $y_i | x_i, z_i \sim M(1, \pi_i)$, with $\pi_i^\top = (\pi_{i,1}, \ldots, \pi_{i,k})$
- General form: $g(\pi_i) = X_i \delta$, with total parameter vector δ
- Application of ML estimation and inference for multivariate GLMs by representation of the model with specific design matrix X_i
- Implemented in the R add-on package ordDisp (Berger, 2020), which internally calls function vglm() from R-package VGAM
- Easy handling (by argument xij) and quite fast computation

We consider a 6-year followup study on diabetes and retinopathy status (Bender and Grouven, 1998).

- Ordinal outcome: Retinopathy (1: no retinopathy, 2: nonproliferative retinopathy, 3: advanced retinopathy or blind)
- Risk factors
 - Smoking (SM; 0: no, 1: yes)
 - Diabetes duration (DIAB; in years)
 - glycosylated hemoglobin (GH; in percent)
 - diastolic blood pressure (BP; in mmHg)

Available from the R-package catdata (Schauberger and Tutz, 2014)

	Covariate	Proportional Odds Model					
		estimate	sta error	z value			
location effects	SM	-0.254	0.191	-1.328			
	DIAB	-0.139	0.013	-10.368			
	GH	-0.459	0.074	-6.175			
	BP	-0.072	0.013	-5.357			
AIC			916.14				
BIC			942.65				
Deviance			904.14				

	Covariate	Location-Shift Model		Locat	ion-Scale M	odel	
		estimate	std error	z value	estimate	std error	z value
location effects	SM	-0.159	0.198	-0.802	-0.348	0.371	-0.938
	DIAB	-0.148	0.014	-10.524	-0.108	0.102	-1.066
	GH	-0.485	0.076	-6.324	-0.311	0.296	-1.053
	BP	-0.071	0.014	-5.204	-0.051	0.047	-1.092
dispersion effects	SM	0.491	0.235	2.087	-0.256	0.150	-1.707
	DIAB	-0.037	0.016	-2.254	0.035	0.010	3.490
	GH	-0.101	0.092	-1.099	0.043	0.053	0.805
	BP	-0.007	0.015	-0.465	-0.012	0.010	-1.186
AIC			912.45			907.17	
BIC			956.63			951.36	
Deviance			892.45			887.17	

	Covariate	Non Proportional Odds Model					
		estimate	std error	z value			
	SM1	-0.405	0.205	-1.972			
	SM2	0.086	0.254	0.340			
	DIAB1	-0.129	0.014	-8.889			
	DIAB2	-0.166	0.018	-9.264			
	GH1	-0.435	0.080	-5.426			
	GH2	-0.535	0.097	-5.470			
	BP1	-0.068	0.014	-4.627			
	BP2	-0.075	0.017	-4.432			
AIC			912.45				
BIC			956.63				
Deviance			892.45				

Maybe the best solution?

	Covariate	Partial Pro	Partial Proportional Odds Model					
		estimate	std error	z value				
	SM1	-0.398	0.205	-1.943				
	SM2	0.062	0.249	0.249				
	DIAB1	-0.129	0.014	-8.895				
	DIAB2	-0.165	0.017	-9.467				
	GH	-0.467	0.074	-6.271				
	BP	-0.071	0.013	-5.228				
AIC		909.77						
BIC		945.12						
Deviance		893.77						

We consider data of a survey conducted in the metropolitan area of Naples, Italy.

- Ordinal outcome: Feeling safe on a 10-point scale
- Large categories refer to high safety
- Data of 2225 participants
- Covariates:
 - Age
 - Gender (0: male, 1: female)
 - Residence (1: City of Naples, 2: District of Naples, 3: Other Campania, 4: Others Italia)
 - Educational degree (1: compulsory school, 2: high school diploma, 3: Graduated-Bachelor degree, 4: Graduated-Master degree, 5: Post graduated)

Available from the R-package CUB (lannario et al., 2015)

Fits of models with logistic link

	Deviance	df	Difference in deviances	df	<i>p</i> -value
Cumulative models					
Non proportional odds model Location-shift model Proportional odds model	9825.78 9899.67 9948.99	19935 19998 20007	73.89 49.32	63 9	0.1640 0.0000
Adjacent categories models					
Model with category-specific effects Location-shift model Model with global effects	9828.07 9902.43 9959.00	19935 19998 20007	74.36 56.57	63 9	0.1549 0.0000

The full model with category-specific effects has 90 parameters, which reduces to 27 parameters in the location-shift model.

Illustration of Location and Dispersion Effects

Cumulative model (left) and adjacent categories model (right)

Cumulative model with smooth effect of age

A test if the smooth effect of age is needed yields a p-value of 0.046.

We consider data from the German Longitudinal Election Study (GLES), a long-term study of the German electoral process (Rattinger et al., 2014).

- Pre-election survey for the German federal election in 2017
- Ordinal outcome: Fear due to the use of nuclear energy on a 7-point scale
- Large categories refer to high fear
- Covariates
 - Age
 - Gender (0: female, 1: male)
 - EastWest (1: East Germany/former GDR, 0: West Germany/former FRG)

Application 3: Nuclear Energy

Fits of models with logistic link

	Deviance	df	Difference in deviances	df	<i>p</i> -value
Cumulative models					
Model with category-specific effects Location-shift model Model with global effects	7499.61 7506.36 7544.60	12192 12204 12207	6.75 38.24	12 3	<mark>0.873</mark> 0.000
Adjacent categories models					
Model with category-specific effects Location-shift model Model with global effects	7500.77 7508.72 7545.41	12192 12204 12207	7.95 36.69	12 3	0.997 0.000

The full model with category-specific effects has 24 parameters, which reduces to 12 parameters in the location-shift model.

Application 3: Nuclear Energy

Illustration of Location and Dispersion Effects

Cumulative model (left) and adjacent categories model (right)

Conclusion

The proposed location-shift model ...

- ... simultaneously accounts for location effects and dispersion effects (or tendencies to respond).
- ... enables an easy interpretation of effects in terms of log-odds.
- ... typically is sufficiently complex to approximate the underlying probability structure.
- ... is often a parsimonious alternative to the use of category-specific parameters.
- ... can be embedded into the framework of multivariate GLMs, which allows to use inference techniques and asymptotic results.

Main References

- Bender, R., Grouven, U. (1998). Using binary logistic regression models for ordinal data with non proportional odds. J. Clin. Epidemiol. 51 (10), 809–816.
- [2] Berger, M. (2020). orddisp: Separating location and dispersion in ordinal regression models. R package version 2.1.1.
- [3] Iannario, M., Piccolo, D. & Simone, R. (2015). CUB: A class of mixture models for ordinal data. R package version 1.1.3.
- [4] McCullagh, P. (1980). Regression model for ordinal data (with discussion). J. R. Stat. Soc. B 42, 109–127.
- [5] Rattinger, H., Roßteutscher, S., Schmitt-Beck, R., We els, B. & Wolf, C. (2014). Pre-election cross section (GLES 2013). GESIS Data Archive, Cologne ZA5700 Data file Version 2.0.0.
- [6] Schauberger, G., Tutz, G. (2014). Catdata: Categorical Data. R package version 1.2.1
- [7] Walker, R. W. (2016). On generalizing cumulative ordered regression models. J. Mod. Appl. Stat. Methods 15(2), 28.
- [8] Williams, R. (2006). Generalized ordered logit/partial proportional odds models for ordinal dependent variables. Stata J. 6(1), 58.
- [9] Williams, R. (2010). Fitting heterogeneous choice models with oglm. Stata J. 10 (4), 540–567.