Gene expression profiling during heat shock response of Campylobacter (C.) jejuni, C. coli and C. lari

Carolin Riedel¹, Greta Gölz¹, Konrad U. Förstner², Cynthia M. Sharma², Thomas Alter¹ ¹Institute of Food Hygiene, Freie Universität Berlin, Germany, ²ZINF Research Center for Infectious Diseases, University of Würzburg, Germany

Introduction

Although Campylobacter spp. is lacking typical stress response mechanisms, e.g. the sigma factor RpoS, it is able to survive in the environment and overcome the barriers along the food chain. The phenotypic response of Campylobacter (C.) jejuni to temperatures above the physiological range is sufficiently characterized. Nevertheless, details about heat shock response mechanisms, metabolic pathways and regulatory factors of C. jejuni are still unknown and survival strategies of C. coli and C. lari at high temperatures are largely unexplored.

First, survival rates at 46 °C were determined to compare the individual fitness of Campylobacter species at high temperatures. The aim of our study was to identify genes involved in responses to temperature upshift from 37 °C to 46 °C. It was conducted to examine and compare the transcriptome changes of C. jejuni NCTC11168, C. coli RM2228 and C. lari RM2100 as a consequence of high temperatures.

Material and methods

Bacterial strains, media and growth conditions

C. jejuni NCTC11168, C. coli RM2228 and C. lari RM2100 were grown on Mueller-Hinton agar containing 5 % sheep blood (MHB; OXOID) for 48 h or in Brucella broth (BB; BD) for 24 h at 37 °C in microaerobic conditions.

Survival studies

Bacterial cultures with an OD₆₀₀ of 0.01 (approx. 10⁶ to 10⁷ CFU/ml) were incubated at 37 °C and 46 °C. Cell numbers were determined by plating the serially diluted culture on MHB agar plates. The survival rates were calculated as percentage of the inoculum.

RNA preparation

Cultures with an OD₆₀₀ of 0.1-0.2 (approx. 10⁹ CFU/ml) were exposed to 46 °C for 30 min before RNA extraction. RNA for RT-qPCR was extracted using a peqGOLD Bacterial RNA Kit (Peqlab). RNA for RNA sequencing was extracted using a hot phenol method [1]. RNA integrity and quantity were determined on an Agilent 2100 Bioanalyzer (Agilent Technologies).

RT-qPCR

1 µg of DNase treated RNA were transcribed into cDNA (RevertAid Premium First Strand cDNA synthesis kit and random hexamer primers; Fermentas). Amplification was performed by a CFX96 Real-time system (Bio-Rad) using SYBR-Green assays (SsoFast EvaGreen Supermix; Bio-Rad). Gene-specific primers were designed using the Primer3 input software (http://frodo.wi.mit.edu/) based on the C. jejuni NCTC11168, C. coli RM2228 and C. lari RM2100 genome sequences.

RNA sequencing (RNAseg)

The libraries were generated (Vertis Biotechnologie AG). RNA samples were treated with Terminator exonuclease and poly(A)-tailed. The 5'PPP were removed using tobacco acid pyrophosphatase followed by ligation of the RNA adapter to the 5-monophosphate of the RNA. First-strand cDNA synthesis was performed with an oligo(dT)-adapter primer and the M-MLV reverse transcriptase. The cDNA was PCR-amplified to reach a concentration of 20-30 ng/µl. The cDNA was purified using the Agencourt AMPure XP kit (Beckman Coulter Genomics) and analyzed by capillary electrophoresis. The primers used for PCR amplification were designed for TruSeq sequencing according to the instructions of Illumina. The combined length of the flanking sequences is 146 bases. The libraries were sequenced with a Illuminua HiSeq machine with 100 cycles in single end mode.

Bioinformatical analysis

The resulting sequence reads were demultiplexed and the adapter sequences removed. The reads (Fastq format) were quality trimmed with a quality cut-off score of 20 and converted to fasta format using fastq_to_fasta [2]. The read processing was performed with the RNA-analysis pipeline RAPL version 0.1 [3] with default parameters which used segemehl version 0.1.3^[4] for the read alignment and DESeq 1.12.0 for differential gene expression analysis [5].

Results

Survival studies

Survival studies at 46 °C revealed differences in the ability to adapt to increased temperature among species (Fig. 1). C. jejuni showed a greater ability to survive than the other tested isolates of C. coli and C. lari. Apart from the 2 h-value cell counts of C. jejuni were significantly higher compared to C. coli and C. lari, While C. lari showed a slightly higher decline of cell count no cells were detectable after 8 h in both species.

over a period of 24 h. Data indicate the medians ± IQR (n = 3)

Gene expression analysis via RT-qPCR

C. jejuni and C. coli responded to a temperature upshift from 37 °C to 46 °C with increased expression levels of common heat shock genes e.g. clpB, dnaK, groES and grpE. Apart from down-regulated genes in C. coli, different expression levels of the individual genes lead to a pattern that occurs uniformly in C. jejuni. This is not evident in C. lari. As the expression levels of these heat shock genes are low in C. lari, the involvement of these genes as major genes in the heat shock response is questionable (Fig. 2).

RNAseg analysis of heat shock response

Exposure to 46 °C revealed diverse transcriptome changes among Campylobacter species (Fig. 3). The highest rate of regulated genes (two-fold change and p<0.05) have been observed for C. coli (9.11%), followed by C. lari (8.97%) and C. jejuni (2.70%). In C. jejuni 89% of regulated genes showed an increased rate of transcription, whereas in C. coli 69% and in C. lari 45% are up-regulated. For quality control, the correlation of \log_2 fold change values of RT-gPCR and RNAseg results was determined from 0.7687 to 0.8472 for R² (data not shown).

Figure 3: Volcano plots of gene expression pattern of RNAseq results. Green= regulated genes with p < 0.05

Heat map analysis visualized the distribution of regulated genes in C. jejuni, C. coli and C.lari. Several genes show in all transcriptomes a temperature dependend regulation (Fig. 4, box II and III), while some genes involved in the heat shock response lack orthologous in the other species (Fig 4, box V). C. jejuni shows a higher accordance of the temperature dependent gene expression profile to C. coli than to C. lari (Fig. 4, box I), which corresponds with RT-qPCR data.

Figure 4: Heat map of gene expression of all regulated genes (with orthologs listed by Fouts et al., 2005) at 46 °C.

Discussion

Strains of C. jejuni, C. coli and C. lari show differences in their ability to adapt to temperature changes. At 46 °C C. jejuni has significantly higher survival rates than the other two species. The survival curves of C. coli and C. lari are almost identical, while the investigated heat shock genes in C. lari show a significantly lower expression at this temperature in RT-qPCR. RNAseq studies revealed considerable differences in temperature dependent gene regulation among Campylobacter species. At this point the complexity of transcriptome changes in Campylobacter is still not fully understood. For that, it is important to structure regulated genes in functional groups and understand mechanisms like co-regulation and the role of other regulatory components.

Auxnowledgement This project was conducted within the scope of the project "Food-Borne Zoonotic Infections of Humans" (FBI Zoo), which is funded by the German Bundesministerium für Bildung und Forschung (BMBF). Parts of this work was performed by the Research Center for Infectious Diseases, University of Würzburg, (Germany).

Literature

¹¹ Blomberg, P.; Wagner, E. G. H.; Nordstrom, K. (1990): Control of Replication of Plasmid R1 - the Duplex between the *I* Rna, Copa, and Its Target, Copt, Is Processed Specifically Invivo and Invitro by Rnase-III.Embo Journal. 9(7), 2331-2340 ¹⁰/rom the FastX suite version 0.013 - http://hanonlab.cshiedu/fastx_toolkit

¹⁴ IGt in uter Fest auto-toucht and the set of the

Institute of Food Hygiene • Freie Universität Berlin • Königsweg 69 • 14163 Berlin (Germany) • Tel. + 49 30 - 838 - 62545 • Fax 49 30 - 838 - 62552 • Carolin.Riedel@fu-berlin.de • www.vetmed.fu-berlin.de

